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Abstract. Understanding how individual proteins are organized into complexes 
and pathways is a significant current challenge.  We introduce new algorithms 
to infer protein complexes by combining seed proteins with a confidence-
weighted network.  Two new stochastic methods use averaging over a probabil-
istic ensemble of networks, and the new deterministic method provides a  
deterministic ranking of prospective complex members.  We compare the per-
formance of these algorithms with three existing algorithms.  We test algorithm 
performance using three weighted graphs: a naïve Bayes estimate of the prob-
ability of a direct and stable protein-protein interaction; a logistic regression es-
timate of the probability of a direct or indirect interaction; and a decision tree 
estimate of whether two proteins exist within a common protein complex.  The 
best-performing algorithms in these trials are the new stochastic methods.  The 
deterministic algorithm is significantly faster, whereas the stochastic algorithms 
are less sensitive to the weighting scheme. 

1    Introduction 

The genome sequence of an organism provides a blueprint of its genes and proteins, 
but not the connections between these parts.  Understanding how proteins are physi-
cally organized into complexes and pathways is increasingly based on observations 
from high-throughput experiments. Yeast has been the most widely used model for 
eukaryotic proteomics.  High-throughput yeast two-hybrid screens have provided  
evidence for pair-wise links between proteins screens [1, 2].  Affinity purification fol-
lowed by mass spectrometry identifies proteins that co-purify with a bait protein, sug-
gesting shared membership in one or more protein complexes [3, 4]. 

Experimental interaction evidence can be unreliable due to high false-positive and 
false-negative rates [5, 6]. Experimental reports have included estimates of confi-
dence based on multiple observations [1, 2, 7].  A more recent report of the fly protein 
interaction network included more sophisticated confidence metrics based on  
sequence analysis and network topology [8].   

Here we consider three confidence-weighted networks derived from high-
throughput data for yeast. The first, by Roth’s group, is a naïve Bayes prediction (NB) 
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of the posterior probability wij  that two proteins have a direct physical interaction 

conditioned on observed data [9], 
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where τ  labels the different types of experimental data, xij
τ  is the experimental data 

of type τ  relating to protein pair i  and j , mij  indicates that the proteins have a di-

rect physical interaction, mij  indicates that the proteins do not have a direct physical 

interaction, and Pr(m)  is the prior probability that two arbitrary proteins have a direct 
physical interaction. 

The second network, by Bader and coworkers, predicts the probability of a direct 
or indirect physical interaction using a logistic regression model (LR) [10], 
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The model parameters {β}  were estimated using a training set equally weighted for 

true-positives and false-positives, equivalent to using 1 for the prior likelihood ratio 
Pr(m) / Pr(m) .  Although the logistic regression scores have been used as the poste-
rior probability of a true interaction [11], they are overconfident to the extent that 
non-interacting protein pairs outnumber interacting pairs in the true interaction net-
work.  A one-parameter fit for Pr(m) / Pr(m)  similar to that used for the NB network 
would convert the LR confidence scores to probabilities.   

The final network, again by Roth’s group, used a decision tree to estimate prob-
abilities of protein pairs being co-complexed (DT) [12].  Then the odds of being co-
complexed are multiplied by an adjustable parameter to estimate the odds of a direct 
physical interaction.  This single parameter may then be fit to optimize performance 
for a training set.  Unlike the NB model, the LR and DT models have the benefit of 
explicitly modeling dependence between predictors. 

Other groups have used related methods to infer confidence-weighted edges not 
observed in the high-throughput data [13-20].  Some such methods include inference 
of shared complex membership or common function, training on just one complex or 
function at a time [21].  While we restricted our attention to the NB, LR, and DT 
weighting schemes, the methods we describe are directly applicable to other weight-
ing schemes as well.  Thus, the starting point for the methods we describe is an undi-
rected weighted graph, in which proteins are represented as vertices and edge weights 
in the range [0,1] represent the probability of a direct or indirect physical interaction 
between proteins.   

We investigate two general classes of algorithms that use confidence-weighted 
networks to infer protein complexes containing one or more seed proteins.  First are 
deterministic algorithms, which directly calculate a threshold neighborhood around 
each seed protein, then identify proteins in the union of the neighborhoods as poten-
tial members of the complex.  These algorithms include BESTPATH, published by 
Bader et al. as the SEEDY algorithm [22] and Shortest Path with Evidence (SPE), 
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published previously by Roth’s group [9] as a baseline for comparing improved algo-
rithms.  Here we report a new deterministic algorithm, SUMPATH, which attempts to 
combine information across multiple seeds. 

The second class of algorithms generates a stochastic ensemble of networks using 
the edge weights as probabilistic measures that an edge taken from the high-
throughput data is a true positive.  This method was introduced by Roth’s group in the 
PRONET algorithm [9], which requires the edge weights to refer to the probabilities 
of direct connections within a complex.  Here we describe two related algorithms, 
PROPATH-ALG and PROPATH-EXP, designed to work well when edge weights al-
so reflect the probability of indirect connections. 

Although algorithms that are initialized with positive and negative seeds have been 
shown to be useful [21], the algorithms we describe use only positive seeds.  Positive 
and negative seeds are particularly appropriate in the context of functional annota-
tions using GO terms [23] or other ontologies in cases where terms in different line-
ages from the root are negatively correlated or mutually exclusive.  The algorithms 
are also different from algorithms of finding complexes de novo [24, 25], which re-
quires no seeds information.   

Beyond introducing the new SUMPATH and PROPATH methods, the rationale of 
this report is to compare the abilities of each of these algorithms relative to recover 
well-annotated protein complexes when given partial information about these com-
plexes.  As in previous studies [9, 22], we use protein complexes from the MIPS cata-
log [26].  Furthermore, since the algorithms can be considered independently from the 
network confidence scores, we also compare performance as a function of the confi-
dence score input.  Because the PRONET algorithm was developed specifically for 
weights corresponding to direct connections, its performance is most fairly compared 
with other algorithms using the NB edge weights.  Nevertheless, we provide results 
for all three networks using PRONET in the interests of completeness. 

2    Methods 

A summary of the algorithms is provided as Table 1. The input to each algorithm is a 

set of weighted edges { }ijw  representing high-throughput interactions between pro-

teins i and j, and a set of one or more seed proteins { }s . The output of each algorithm 

is a ranked list of other proteins in the network, where pr  is the protein with rank r in 

the list. Lower ranks correspond to greater probability that a protein is a member of a 
complex containing one or more of the seeds. In most of the algorithms, the ranks are 
calculated by first calculating a score S

i
 for each protein i, with higher scores corre-

sponding to lower rank. 
Each algorithm generates complex-membership scores differently based on the ex-

istence of one or more paths connecting seed proteins to other proteins in the network.  
For many proteins, no such path exists.  These proteins are formally described as hav-
ing distance = ∞  and/or score = 0 (the lowest possible value) and are appended to the 
end of the ranked list.  We first describe the deterministic methods, Shortest Path with 
Evidence (SPE) [9], BESTPATH [22], and SUMPATH, then describe PRONET [9] 
and the probabilistic PROPATH algorithms. 
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Shortest Path with Evidence (SPE). The SPE method ignores the edge weights, 
treating each edge with any supporting evidence as having the same weight.  The dis-
tance D

i
 of each protein in the network to the set of seeds is calculated as 

D
i

= min
s ∈seeds

D
is

 (3) 

where D
is

 is the  number of links in the shortest path connecting protein i to seed s, or 

+∞  if no such path exists.  Proteins are then ranked in decreasing order of D
i
. 

 

BESTPATH. The BESTPATH algorithm is identical to SEEDY, published earlier by 
Bader et al [22].  Here we term this algorithm BESTPATH to be more descriptive.  
With this algorithm, the weight of a path through proteins i1 , i2 , …, in  is the product 

of edge weights wik ik+1k =1

n−1∏ .  The score of each protein is defined as 

S
i

= max
s ∈seeds

S
is

,  (4) 

where Sis  is the highest weighted path between protein i and seed s.  These paths may 

be computed efficiently using standard algorithms for traversing weighted graphs.  
Our implementation uses a priority queue implemented through a max-heap. 
 

SUMPATH. We developed the SUMPATH method in an attempt to improve 
BESTPATH by searching for multiple high-weight paths.  SUMPATH is based on Ising 
models for spin lattices [27, 28].  Each protein is assigned a spin label, 1 (part of the 
complex) or –1 (not part of the complex).  Weighted edges in the network are interpreted 
as couplings between spins [29], and the goal is to identify the set of labels {Si }  that 

minimize an energy function −Σ(ij )SiwijSj − ΣiφiSi , where φi  is an external field rep-

resenting prior knowledge of the probability of each spin state. Approximations such as 
mean field theory [28] or belief propagation [30] can be applied to reduce the computa-
tional complexity, but are beyond the scope of this paper.  Here we present a simplified 
method.  In this method, each seed s is assigned a score Ss = 1  that remains fixed 

throughout the algorithm.  The BESTPATH method is used to initialize the scores Si
0( )  

of the other proteins.  Scores for iteration q + 1  are obtained using the equations  

T
i

q +1( ) = w
ij
S

j
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j

∑ ,  Norm q +1( ) = max
i

T
i

q +1( )   and  S
j

q +1( ) = T
i

q +1( )
Norm q +1( )

  (5) 

to update the scores from iteration q.  The sum over j in the first equation includes 
seed proteins.  Iterations proceed until convergence, with 8-10 iterations required for 

convergence according to the criterion max
i

Si
q+1( ) − Si

q( ) < 0.001 .  The converged 

scores are then output.  The normalization is required to prevent scores from growing 
without bound and is performed for the entire network rather than separately for each 
connected component. 
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PROPATH and PRONET Methods. PROPATH and PRONET are stochastic meth-
ods that require the generation of an ensemble of K  replicate networks based on the 
edge weights.  Each protein pair in each generated network receives a weight of either 
0 or 1 based on a Bernoulli trial (i.e., a ‘weighted coin flip’) with probability wij  that 

an edge between proteins i  and j  exists.  Edges that are not included in the weighted 

network are assumed to have confidence 0 and never appear in a replicate network. 
For each replicate network k ∈K , the shortest path between protein i  and seed 

s  is denoted Dis
k( ) , with Dis

k( ) = ∞  if no path exists.  These distances are calculated 

as with SPE, rather than BESTPATH, as the edge weights have already been taken in-
to account in the generation of the replicate network.  As with SPE, the distance to the 

closest seed is retained for each protein, Di
k( ) = min

s
Dis

k( ) .  If two proteins are in the 

same complex, we anticipate that multiple replicates in the ensemble will have a short 

path connecting the proteins.  The mean distance over the ensemble, K −1 Di
k( )

k∑ , 

is an inappropriate summary statistic because of the possibility that one of the repli-
cates will generate an infinite distance.   

The different PROPATH methods use distinct mathematical transforms to avoid 
this problem.  Each transform maps infinite distance to zero score, and unit distance 
(the smallest possible distance for a protein that is not itself a seed) to unit score.  The 
transforms we selected are 

S
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i
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, PROPATH-ALG
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i
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where Si
k( )  is the transformed score of protein i  in replicate network k, I arg( )is an 

indicator function that is 1 for a true argument and 0 for a false argument, and α  is a 
parameter defining the steepness of the decay of the algebraic or exponential trans-
form. We have found that the PROPATH algorithms are insensitive to the exact value 
of α , with similar results for PROPATH-EXP for values of α  up to 5 (a much faster 
decay; results not shown).  For convenience, we used α = 1  for PROPATH-ALG and 
PROPATH-EXP; performance may improve with an additional optimization over this 
single parameter. 

In the PRONET algorithm, there is no distance-based decay.  The existence of a 
path connecting a pair of vertices is converted to a 0/1 binary variable that is averaged 
over probabilistic networks.  Formally, this is equivalent to taking the limit α → 0  in 
the PROPATH algorithms. 

The final score of a protein is estimated as the average over replicates, 

Ŝ
i

= K −1 S
i

k( )

k

∑ .   (7) 

The variance of Ŝ
i
 is bounded because 0 ≤ S

i

k( ) ≤ 1 : 
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where the angle brackets refer to an average over a single replicate network.  We used 
K  = 400 to give a standard deviation no larger than 0.025.  We checked that results 
had converged with respect to K . 
 

Performance Metrics. We followed the same general procedure for each complex.  
First, we generated N

trial
= 10  random 50-50 splits of the complex into seed proteins 

and target proteins that were used as input to each algorithm.  For complexes with an 
odd number of members, the seed group had one more member than the target group.  
The set of target proteins for trial t of complex c is denoted Tct .   The seeds were then 

used as input seeds for each of the algorithms, which returned lists of proteins ranked 
by decreasing likelihood of membership in the same complex as the seeds.  Proteins 
used as seeds were omitted from the ranked list.  The protein at rank r for trial t of 

complex c is denoted pctr . The indicator function I p
ctr

∈T
ct

( )  is 1 if this protein  

belongs to the target set and 0 otherwise.  
Summing the indicator function over ranks, trials, and complexes provides a  

quantitative assessment of algorithm performance by generating a receiver operating 
characteristic (ROC) curve.  The order of summation was as follows.  First, for each 
complex and trial, we calculated the numbers of true positives and false positives 
through rank r, TP

ct
r( )  and FP

ct
r( ) , as 

TP
ct

r( ) = I p
ct ′r

∈T
ct

( )
′r =1

r

∑   and  FP
ct

r( ) = r − TP
ct

r( ) .   (9) 

This makes the conservative assumption that the identity of each complex is correctly 
reported in the MIPS data.  The true positive and false positives counts were then av-
eraged over the trials for each complex, 

TP
c

r( ) = N
trial

( )−1
TP

ct
r( )

t =1

N trial

∑   and  FP
c

r( ) = r − TP
c

r( ) .   (10) 

The counts were then converted to true-positive and false-positive rates for each  
complex, 

tp
c

r( ) = TP
c

r( ) T
c

,    fp
c

r( ) = FP
c

r( ) N
tot

− N
c

.   (11) 

where T
c

 is the cardinality of the target set for complex c, and N
tot

− N
c

 is the 

number of proteins in the interaction network minus those that are also in the com-
plex. Note that the maximum value for tp

c
r( )  for large r is less than 1 if not every 

protein in the complex is in the protein interaction network.  The maximum value of 
fp

c
r( )  is 1, however. The overall true-positive and false-positive rates, averaged 

over complexes, are 
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tp r( ) = C −1 tp
c

r( )
c =1

C

∑   and   fp r( ) = C −1 fp
c

r( )
c =1

C

∑ .   (12) 

This procedure gives equal weight to each complex.  The ROC curve is the parametric 
plot of tp r( )  vs. fp r( ) .   

As with microarray analysis, the false-discovery rate may be more informative than 
the false-positive rate because the maximum number of false-positives far outweighs 
the maximum number of true-positives.  The false-discovery rate is defined as a func-
tion of r as 

fd r( ) = C −1 FP
c

r( )
TP

c
r( ) + FP

c
r( )c =1

C

∑ .   (13) 

With ~4000 proteins in the network, the false discoveries begin to dominate the re-

turned list of proteins when the false-positive rate is on the order of N
tot

−1 , or ~ 10−3 .  

The area under the ROC curve (AUC) provides a quantitative measure of perform-
ance, with higher AUC corresponding to better performance.  Our focus is on the re-
gion of the ROC curve with few false-positives.  Thus, rather than calculating the area 
under the entire curve, we calculate the area up to a false-positive rate typical of what 
would be used in practice.  We normalize this area to return a value termed 
AUC fp( )  that increases with better recall, 

AUC fp( ) = fp( )−1
d f ′p( )tp f ′p( )

0

fp

∫ ,  (14) 

where the true-positive rate is considered to be a function of the false-positive rate.  
Results are provided for AUC(0.1%) and AUC(0.5%).  The AUC for a complex 
(AUCc) is also calculated to measure the complex specific recovery performance, 

( ) ( ) ( ) ( )1

0

AUC
c

fp

c c c cfp fp d fp tp fp
− ′ ′= ∫ . 

3    Results 

Algorithms for extracting protein complexes from confidence-weighted interaction data 
were tested by assessing their ability to extract a known complex based on partial 
knowledge of its components.  As a gold standard of true complexes, we used C = 23 
known complexes from MIPS [26].  These complexes include many of those used in the 
original reports of the PRONET and BESTPATH algorithms.  In general, each algo-
rithm returns a ranked list of possible complex members and, based on the known com-
plex, calculates recovery rates as a function of proteins through rank r : the true-positive 
rate tp(r)  (the fraction of positive predictions that are correct); the false-discovery rate 

fd(r)  (the fraction of positive predictions that are incorrect); and the false-positive rate 

fp(r)  (the fraction of non-interacting pairs that are predicted positive). Performance is 
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visualized by graphing tp r( )  vs. fp r( ) in the region of 0 < fp r( ) < 5 × 10−3 , corre-

sponding to ~20 false-positives, and the tp r( )  vs. fd r( ) graph in the full region of 

0 < fd r( ) < 1 .  Quantitative measures such as normalized AUC (Area Under the 

Curve) and FP-50 (false-positive rate at 50% recall) provide a convenient summary met-
ric for ranking the algorithms (Table 1).  The AUC for each complex (AUCc) is calcu-
lated (Fig. 2).   

Table 1. Summary of methods. For each network, each algorithm was ranked 1-6 in perform-
ance, 1 = best, 6 = worst. Superscripts in numbers stand for the ranking, and are also indicated 
by the background colors (Green = rank 1 or 2; Yellow = rank 3 or 4; Red = rank 5 or 6; ties are 
colored as the best rank). The ranks were averaged to give an overall measure of each 
algorithm’s performance. aNormalized area under the curve (AUC) at a false-positive rate of 
0.1%, in percentage scale. See Eq. [14] for the normalization. bNormalized AUC at a false-
positive rate of 0.5%.  cFalse-positive rate at 50% recall, in percentage scale. 

AUC 0.1%(%)a AUC 0.5%(%)b FP-50(%)c CPU Time (min)  Avg. 
Rank

NB LR DT NB LR DT NB LR DT NB LR DT 

PROPATH-
EXP 

2.25 101 171 201 191 341 341 7.31 1.22 1.02 8.15 2405 29006 

PROPATH-
ALG 

2.33 101 171 201 191 341 341 8.03 1.22 1.02 7.94 2406 27005 

BESTPATH 2.5 7.64 153 183 154 333 323 7.72 0.91 0.91 7.32 8.12 952 
PRONET 3.8 101 0.035 183 191 0.185 314 9.55 276 1.64 7.63 2304 25004 
SPE 4.3 0.436 0.414 0.296 4.36 2.64 1.46 116 5.84 9.36 4.81 5.81 561 

SUMPATH 4.8 1.35 0.0096 4.15 125 0.0926 8.45 8.14 225 5.85 776 423 3003 

NB network. We first compared algorithm performance for the confidence scores 
taken from NB [9] (Table 1 and Fig.  1A, B).  The AUC (0.1%) and AUC (0.5%) 
measures show that PROPATH-EXP, PROPATH-ALG and PRONET have roughly 
equivalent performance in the region of stringent prediction, followed by 
BESTPATH.  The SUMPATH algorithm has intermediate performance, and the SPE 
has the worst performance.  
 

LR network. We then compared algorithm performance for confidence-weighted 
edges taken from LR [10].  The PROPATH-EXP and PROPATH-ALG algorithms 
perform the best and are comparable, followed closely by BESTPATH (Fig. 1C, D).  
These three algorithms dominate the other algorithms in this region of stringent pre-
diction, returning ~40-50% of the target proteins.  

 

DT network.  The last edge weights we used are from DT [12].  This set of edge 
weights has a tunable parameter α .  For each algorithm, we chose the value of α  
that maximized its AUC(0.5%).  PROPATH-EXP and PROPATH-ALG have equiva-
lent performance, followed closely by PRONET and BESTPATH.  The remaining  
algorithms, SUMPATH and SPE, have the worst performance (Fig. 1E, F).   
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Fig. 1. Algorithm performance. Receiver operating characteristic (ROC) curves and false-
discovery rates characterize the performance of algorithms to extract protein complexes from 
protein interaction networks. Fig. 1A and 1B are from edge weights using NB [9], Fig. 1C and 
1D are from edge weights using LR [10] and Fig. 1E and 1F are from edge weights using  
DT [12]. 

Complex-specific recovery. We then investigated whether certain complexes are eas-
ier to recover than others.  Given a set of network edges and a recovery algorithm, a 
one-sided Wilcoxon test was used to test the significance of the hypothesis that a par-
ticular complex had a higher than average AUC 0.5% compared to other complexes 
recovered using the same network edges and the same algorithm.  A more complete 
description is provided in the Methods. 
 

We found that the best-performing algorithms (PROPATH-EXP, PROPATH-ALG, 
and BESTPATH) consistently recovered four complexes with a higher than average 
AUC 0.5% regardless of the network edges used: the PROTEASOME, HISTONEAC, 
HISTONEDEAC and NUCLEARPORE.  One reason for better-than-average recov-
ery of these specific complexes may be the number of proteins contained in these 
gold-standard examples, 36, 17, 4, and 24 respectively.  These are less than the mean 
number of proteins across all complexes, 45.8.  A possible interpretation is that these 
four represent distinct single complexes.  Other gold-standard complexes may in fact 
comprise a number of more loosely coupled sub-complexes that are more difficult to 
recover as single cohesive units.  Such sub-complexes might also be expected to have 
more interactions outside the gold-standard complex, which would reduce the AUC.  
Furthermore, signaling pathways might also be expected to be more loosely coupled 
and not recovered as well. 
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Fig. 2. Complex-specific performance plot identifies complexes that are better extracted using 
our methods. AUC 0.5% for each complex is visualized using the color key on the bottom right 
corner. Complexes have been reordered to show clusters of similar performance.Lighter colors 
indicate better performance. 

Recovery performance may be visualized using a color-coded display of true-positives 
and nominal false-positives predicted by an algorithm (Fig. 3). We focus on a specific 
complex, histone acetyltransferase (HAC), which has 17 members. We generated ran-
dom 50-50 splits of the complex into seed proteins ( E

t
) and target proteins. The seed 

proteins were then used as input to PROPATH-EXP with LR to generate a list of proteins 
ranked by decreasing likelihood of their memberships in HAC.  We kept the first half of 

the ranked list, Pt = p
rt
, r

N
tot

N
c
2

2{ } , excluding the seeds. N tot  is the total num-

ber of proteins in the list and Nc  is the number of proteins in the complex.  The number 

of times protein p  has been used as seed is N
sp

= I p ∈ E
t

( )
t =1

N trial

∑ , where I p ∈ E
t

( ) is 

the indicator function, I p ∈ E
t

( )=
1 p ∈ E

t

0 p ∉ E
t

⎧
⎨
⎩

. The maximum possible recovery 

count for protein p  is N
trial

− N
sp

, and the recovery rate for protein p  

is Rp = I p ∈Pt( )
t=1

Ntrial

∑ N trial − Nsp( ). We defined three categories of recovered  

proteins: 
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p HAC{ } p,with Rp 0.5{ } , High recovery rate true-positive protein

p HAC{ } p,with Rp < 0.5{ } , Low recovery rate true-positive protein

p HAC{ } p,with Rp 0.5{ } , High recovery rate false-positive protein  

In the graph, we have 9 out of 17 HAC proteins recovered with R ≥ 0.5  and 2 
false positive proteins with R ≥ 0.5 . Despite not being included in the MIPS cata-
logue for HAC, these two proteins, SGF29 and SGF73, are annotated in SGD as 
probable subunits of the SAGA HAC. 

 

Fig. 3. Complex recovery graph. Histone acetyltransferase complex recovery graph shows the 
rate of proteins being recovered. Dark green nodes indicate high recovery rate true-positive pro-
teins. Light green nodes indicate low recovery rate true-positive proteins. Red nodes indicate 
high recovery rate false-positive proteins. 

Beyond recall performance, CPU performance may also be a criterion for select-
ing an algorithm. Timings are provided for a Perl implementation of each algo-
rithm (FreeBSD 5.2.1, 3.0Ghz Pentium-4 CPU, 1GB memory). The deterministic 
algorithms SPE and BESTPATH are approximately 3 to 5 times faster than the 
probabilistic PROPATH algorithms. A naïve expectation is that the running time 
would scale as the number of probabilistic replicates sampled for the PROPATH 
algorithms; the difference is likely due to initialization overhead common to the 
probabilistic and deterministic algorithms. The SUMPATH algorithm, although 
deterministic, requires iterations for convergence. Thus, it is much slower than the 
other deterministic algorithms by about three times. The same algorithms imple-
mented in C run an order of magnitude faster or more than those implemented in 
Perl, depending on the size of the network, but the relative timings of the  
algorithms are similar. 
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4    Discussion and Conclusion 

We have introduced novel algorithms for predicting additional members of a protein 
complex based on knowledge of a subset of known members and access to a database 
of confidence-weighted protein-protein interactions. These algorithms have been 
tested against one another, and with related algorithms described previously in the lit-
erature.  Important future work is to benchmark these algorithms against other meth-
ods that predict process-specific networks [31] or model the dynamical structure of 
protein complexes [32, 33].  Such comparisons will require standardized data sets and 
performance criteria [34].  

The best-performing algorithms overall, PROPATH-EXP and PROPATH-ALG, 
share two distinctive characteristics. First, they rely on probabilistic sampling of pro-
tein interaction networks based on the confidence weights.  Second, they use a dis-
tance measure, rather than the mere existence of a path, to rank potential complex 
members. A deterministic algorithm that performs almost as well in this test, 
BESTPATH, uses a greedy approach to identify the single path with greatest prob-
ability, but does not explicitly consider the length of a path.  We attempted to improve 
the performance of BESTPATH by incorporating multiple paths.  The resulting 
SUMPATH algorithm performed worse, however. The BESTPATH algorithm has an 
additional speed advantage over all other algorithms tested, excepting the poorly per-
forming SPE method, which ignores confidence weights. 

An important conclusion of this work is that algorithms may be sensitive to the 
meaning of an edge, in particular whether it represents a direct physical interaction or 
a more general functional association (such as co-membership in a protein complex).  
The PRONET algorithm, which was developed specifically for inference based on a 
network of direct interactions, indeed performs less well beyond its intended range.  
Other algorithms, including BESTPATH and PROPATH, appear more robust to the 
inclusion of indirect interaction edges.  Quantitative measures of performance can de-
pend on the examples used for testing; we find that some complexes are consistently 
recovered better than others regardless of algorithm or network edges. 

While BESTPATH performed nearly as well as PROPATH-EXP and 
PROPATH-ALG in this test, we anticipate that the performance of BESTPATH 
will degrade in networks with many interaction edges having a weight close to 1, 
which should happen increasingly often as individual interactions are experimen-
tally validated.  As the number of high-weight edges increases, the BESTPATH  
algorithm will necessarily return an increasingly large fraction of proteins in the 
network.  In this regime, however, the probabilistic PROPATH-EXP and 
PROPATH-ALG algorithms that explicitly consider the length of a high-confidence 
path should continue to give good performance.  
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