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The most desirable compound leads from high-throughput assays are those with novel biological activities
resulting from their action on a single biological target. Valuable resources can be wasted on compound
leads with significant ‘side effects’ on additional biological targets; therefore, technical refinements to identify
compounds that primarily have effects resulting from a single target are needed. This study explores the use
of multiple assays of a chemical library and a statistic based on entropy to identify lead compound classes
that have patterns of assay activity resulting primarily from small molecule action on a single target. This
statistic, called the coincidence score, discriminates with 88% accuracy compound classes known to act
primarily on a single target from compound classes with significant side effects on nonhomologous targets.
Furthermore, a significant number of the compound classes predicted to have primarily single-target effects
contain known bioactive compounds. We also show that a compound’s known biological target or mechanism
of action can often be suggested by its pattern of activities in multiple assays.

INTRODUCTION

Since the advent of high-throughput assay technology and
combinatorial chemistry, millions of compounds have been
screened for a wide variety of biological activities,1-3 and
many successful drug leads have been discovered.4,5 Com-
putational tools have a central role in interpreting biological
screening data to identify compound leads.6,7 However even
with current techniques, identifying good leads from phe-
notypic screening data is still a challenge given that the
number and identity of a lead compound’s targets are often
unknown and that some leads have multiple targets. Gener-
ally speaking, a good lead compound identified in a high-
throughput assay should have a single biological target and
additional assay phenotypes that better classify its mechanism
of action. Computational tools may have a role in identifying
such leads.

Phenotypic assays are widely used in chemical genetics
to identify compound leads but are often confounded by
effects of a small molecule on multiple unknown targets. In
a forward chemical-genetics experiment, a collection of
compound leads identified by a high-throughput phenotypic
assay is studied in subsequent rounds of follow-up assays
until the biological targets of those compounds can be
identified.8-26 Because these primary assays survey pheno-

types, rather than binding to a single protein, many different
biological targets are possible. By contrast, in a reverse
chemical genetics experiment, a compound target is known,
but the small-molecule-induced phenotype is not well-
characterized:27 this also presents experimental challenges
requiring numerous rounds of follow-up phenotypic assays
and the possible discovery of side effects.

Compound activity may be the result of a small molecule’s
action on a single biological target that induces more than
one phenotype or a small molecule’s action on different
biological targets. If a lead compound responsible for
different phenotypes has multiple targets, it may be difficult
to determine the target(s) inducing each phenotype. Further-
more, the compound’s effects on other targets may be
undesirable. Therefore, discriminating compound leads with
single-target effects from those with multiple-target (‘side’)
effects is crucial to identifying the most promising lead
compounds.

To meet this challenge, computational tools must be able
to model multiple classes of active compounds with multiple
assay phenotypes induced by unknown targets. Certain
computational tools used in drug discovery, such as decision
trees and Bayesian learning, can predict activity of multiple
structural classes using noisy screening data; however, they
generally assume activity on a single target or a single
therapeutic phenotype.28-35 In a notable exception, decision
trees were used to model activity on a small number of
different targets simultaneously.36 Alternatively, clustering
algorithms have been widely used to identify distinct
biologically active compound classes37-40 and to segregate
compounds into distinct structural classes that differ in their
assay phenotypes.41
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This paper explores the potential of computational tools,
namely clustering and an entropy-based coincidence score,
to identify compound classes active in multiple assays and
generate hypotheses about a compound’s biological target(s)
or mechanism(s) of action. Clustering appears to be an
appropriate initial first step toward defining and understand-
ing the multiplicity of compound structural classes. Here we
apply an entropy-based coincidence score to structurally
defined groups of compounds (‘compound classes’), assess-
ing whether the pattern of assay activities within a compound
class suggests a single target or mechanism of action. We
show that this score discriminates compound classes prima-
rily known to have single-target effects (and possibly weaker
undetected side effects) from those with significant side
effects on nonhomologous targets. We also show that trends
in the activities of a compound class confirm the known
activity of many compounds and suggest the compound’s
known target or mechanism.

METHODS

Chemical Descriptors.Daylight fingerprints were used
to represent each compound and then used to identify
compound classes through clustering.37-40,42-44 Daylight
fingerprints containing 4096 bits were used to encode two-
dimensional substructures (i.e. no specified stereochemistry)
up to 7 bonds in length for each compound in the Chem-
bridge Diverse Set E library.41

All library compounds were stored in SD files and were
subsequently converted to nonisomeric canonical SMILES
using Daylight’smol2smialgorithm. The SMILES format
was edited to remove salts and charges, using a modified
version of a previously described Perl module.45 The 4096-
bit Daylight fingerprints were then calculated directly from
the nonisomeric canonical SMILES representations.

Clustering. The Daylight fingerprints allow each com-
pound in the 16 320-member Chembridge Diverse Set E
library to be represented by a point in a 4096-dimension
chemical space with each dimension corresponding to a
single bit in the fingerprint. The compound points were
partitioned by K-modal clustering with Euclidean distance
as a measure of similarity intoK ) 2, 5, 11, 21, 42, 85,
170, 340, 680, 1360, and 2720 clusters using modified open
source software from Cluster 3.0.46 Euclidean distance was
used instead of Tanimoto coefficients,47 because it better
segregates biologically active and inactive compounds.41

Because K-modal clustering is stochastic (random initializa-
tion), clustering for each choice ofK was performed in
triplicate. Each cluster represents an approximate structural
class of compounds.

Class Annotation with Assay Data.Each compound class
learned by clustering was annotated with data from 48 high-
throughput assays performed at the Harvard Institute of
Chemistry and Cell Biology (ICCB). This diverse collection
of assays includes target-based fluorescence polarization
assays,27 growth-based assays,8,9 and phenotypic assays
measuring microtubule assembly, actin polymerization, en-
docytosis, and acetylation among others.10-23 Given the large
number of assays screened and the large number of targets
that can induce a single phenotype, there is a good chance
that chemical action on a single biological target will induce
more than one assay phenotype.

Assays were performed once or in duplicate using
compound concentrations on the order of 10µM. The
‘readout’ for these assays was fluorescence, luminescence
intensity, or visually assessed phenotypes from automated
microscopic images. Given the large signal variation associ-
ated with high throughput assay measurements, typically only
two or three states (hit/nonhit or enhancer/nonhit/suppressor)
were distinguishable.

Results were filtered to remove defective plates and
fluorescent compounds screened in assays with a fluorescent
readout. Substantially the same collection of phenotypic assay
data has previously been shown to contain information useful
in describing the biological activity of small molecules41 and
has led to identification of numerous biologically active
molecules.8-23,26

To annotate each structural class with assay data from the
48 ICCB high-throughput screens, screening results for each
compound were converted to binary designations (‘hit’ or
‘nonhit’) such that the top or bottom 4% of screened
compounds were considered hits in a given assay if it
employed a numeric measurement (visually assessed phe-
notypes were textual and did not use thresholds.) This choice
of thresholds was based on previous results showing that
top-4% and bottom-4% thresholds yield statistically signifi-
cant concentrations of hits in compound classes obtained by
clustering,41 and these measurements were filtered statistically
by class scoring (described below) before their use. In most
assays, only one signal (either the high or the low signal) is
considered biologically meaningful, but we found that the
second signal was often indicative of other compound
properties of interest, such as compound toxicity or fluores-
cence. For example, in most cell-based assays, a high “top”
signal indicates a desired phenotype, such as phosphorylation
of a target protein as detected by an antibody, and a low
“bottom” signal indicates lack of cell growth (compound
toxicity).

Scoring Compound Classes.Next, we identified assay
activities that were significantly enriched in each compound
class and subsequently considered only those enriched assay
activities for that class. Significance was assessed using the
cumulative hypergeometric probability, used previously to
predict the assay activities of compounds within a class with
as much as 87% sensitivity and fewer false positives than
single molecule scores.41 The cumulative hypergeometric
probability (or class score) measures the probability of
obtaining the observed number of hits within a class or more
by chance alone given the total number of compounds
(library size) and the total number of hits for the assay type
under consideration.

The class score41 was used to evaluate each assay activity
in each class. For a class ofc tested compounds withh hits
given a library withN tested compounds andH total hits in
assaya, the probability of gettingh or more hits in the class
is

where

Pa+(c, h, N, H) )
Σi)h...min(c,H) C(H, i) * C(N-H, c-i)/C(N, c)

C(c, h) ) c!/(c-h)! h!
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For each compound classc, the set of assays{A|c} for
which their respective class scores Pa+ were less than 0.005
was determined. The cutoff of 0.005 was chosen because
class scores with this probability were very infrequent in
randomized data sets. In effect, only compound “hit”
measurements that were also present in a class statistically
enriched in that particular assay activity (Pa+ less than 0.005)
were retained in this analysis: this reduced the actual
percentage of hits in any given assay from the starting value
of 4% to a smaller rate closer to 1%. The actual percentage
of hits for each assay (and threshold) varied significantly
between assays, ranging from 0 to 2%, reflecting the different
numbers of active compounds expected in different assays
as detected by class scoring (see Supporting Information E).
Furthermore, the “hit” measurements that remained after
statistical filtering were previously shown to be more reliable
predictors of activity despite being less potent in the primary
assay than many original compound “hits” excluded.41

The set of assay activities{A|c} included those derived
from both top and bottom assay thresholds, so a class could
have assay activities obtained from both thresholds for the
same assay. Many assay measurements described biological
phenotypes, while others only measured compound fluores-
cence or compound toxicity; any measurement that had no
meaningful interpretation was excluded from the analysis.

The expectedfrequency of classes with multiple assay
activities was estimated by randomly permuting compounds
among the class partitions, such that the size distribution of
the classes and the assay measurements associated with each
compound were preserved, although the specific compounds
belonging to each class were different.

Coincidence Score.For each compound we define an
assay outcome, a vector containing binary (0 or 1) values
depending on the results of each assay considered significant.
To identify compound classes that have multiple-assay
phenotypes resulting from a common mechanism (such as
fluorescence or a single biological target), a coincidence score
was devised that measures the statistical significance of the
number of unique assay outcomes of compounds within the
compound class. Intuitively, assay phenotypes resulting from
a common mechanism of action should be induced by the
same compounds within a structural class, and therefore more
compounds within the class would be expected to have the
same assay outcome (Chart 1). If more than one biological
target were bound by the small molecules within a class,
the assay outcomes of compounds in the class would be
expected to vary because the variation of structural features
within that compound class should affect the activity on
different biological targets (and assays) differently (Chart
1). Ideally, all compounds within any given class will have
identical assay activities, but in practice this is rarely the
case even for compounds thought to affect a single target.
Our goal is to distinguish compound classes with highly
variable assay activities from those that are more uniform.

To measure the degree to which the hits from the different
assays{A|c} coincide within a compound class, an entropy-
based score called the coincidence score was calculated for
hits within that class. Based on the multinomial distribution,48

the coincidence score counts the number of ways assay data
can be permuted within a compound class while generating
the same observed frequency distribution of assay outcomes.
Assay outcomes only attainable a few different ways are

considered highly ordered, or equivalently, to have low
entropy. In this case, the coincidence score measures the
number of ways that hits within a class can be permuted,
such that the same pattern of hits is observed within that
class. A complete derivation of the coincidence score and
its relationship to a more familiar measure of entropy,
Shannon’s entropy,49-54 is provided in the Supporting
Information sections A and B, but a synopsis is provided
here.

For any class containing c compounds having the observed
frequencies of assay outcomes{hb1 b2...bn} obtained fromn
) #{A|c} assays (the number of significant assay activities
in the class) whereb ∈{1,0}, the coincidence is

The coincidence score attains a maximum value (perfectly
disordered state) when each compound in the class has a
unique assay outcome (every assay outcomehb1 b2...bn) 0
or 1) and a minimum value when all compounds have same
assay outcome (somehb1 b2...bn) c).

In the event there are untested compounds within a class
for any given assay, the coincidence score is calculated using
three possible assay states: hit, nonhit, and untested ora1,
a0, andaU. To calculate the coincidence score in the presence
of missing data, the number of configurations are first
calculated for the three-state case C3 and then are divided
by the number of configurations for the two-state case C2

having the assay statesaT testedandaU untested, whereaT

) a1 + a0. The sets of assay outcomes for a class ofc
compounds tested inn assays for the three-state and two-
state cases are{af1 f2...fn} and{ad1 d2...dn}, respectively, where
f ∈{1,0,U} and d ∈{T,U}. Similar to the above example,

Chart 1. Sample Compound Classes Demonstrating Assay Outcome
Coincidencea

a For purposes of illustration, here is hypothetical assay data for two
compound classes. While both classes have the same number of
compounds and the same number of assay hits, the degrees to which
the assay outcomes coincide within those classes are vastly different.
Clearly the “highly coinciding” compound class has more assay
activities held in common among compounds than the “poorly
coinciding” class. The highly coinciding hits suggest a common
mechanism of compound action inducing assay activities A, B, and C.

configurations(c, {hb1b2...bn}) ) c!/h00...0! h10...0! ... h11...1!

such that coincidence) log(configurations)
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the three- and two- state configurations are calculated:

and

where

and

The coincidence score with missing data reduces to the
sum of coincidence scores for complete data for compound
subsets that are uniformly tested or uniformly untested
against the set of assays, wheref ∈{1,0,U}, d ∈{T,U}, and
b ∈{1,0}:

This result is intuitively appealing because the presence
of untested compounds does not increase the value of any
term in the coincidence score. If each compound in the class
were untested in different assays (giving each compound a
unique assay outcome), the coincidencemissing score would
be equal to zero, correctly ignoring the entropy added by
missing data and corresponding to an empty data set.

Caution is warranted when comparing coincidence scores
derived from classes with different numbers of compounds
and different amounts of missing data. This type of com-
parison is best accomplished usingp-values associated with
the observed coincidence values P(C) to measure significance
and normalized coincidence values to measure strength of
the association. The raw coincidence score can be normalized
by dividing it by the maximum possible entropy for that
class.55

The normalized coincidence score was calculated for each
class with two or more assay annotations #{A|c}g 2. While
the normalized coincidence score enables direct comparison
between the strength of the coincidence in classes of different

sizes, it does not measure statistical significance. To ac-
complish this, ap-value was calculated for each class’s
coincidence as well. Because there was no practical way to
calculate thisp-value exactly (except when #{A|c})2), the
observed coincidence score was compared to the coincidence
scores obtained by randomly permuting each of the separate
assay annotations within a class and then ranking the
observed coincidence score to obtain thep-value, P(C).
Random permutation was accomplished by holding missing
data points stationary, so that only hits and nonhits were
actually randomized. Random permutation did not preserve
compound identity, but it did preserve the number of hits
associated with each assay within each compound class
(Chart 2).

For each class with two or more assay annotations #{A|c},
4000 randomizations were performed, and the frequency
distribution of random coincidence scores was obtained. The
p-value, the probability of obtaining the observed coincidence
or better, was estimated by obtaining the percentile ranking
of the observed coincidence score relative to the randomized
scores. If the observed coincidence score was smaller than
all 4000 randomized scores, then the class was assigned the
default probability,p < 1/4000, with the understanding that
more randomizations would be required for a more precise
estimate. Estimatedp-values below 0.01 and normalized
coincidence scores below 0.10 were considered significant
because they were observed to occur infrequently in random-
ized data sets. The two scores were used in combination
because ranking by P(C) favors large classes of compounds
with small correlations between assay activities, and the
normalized coincidence score favors small classes of com-
pounds having identical assay outcomes. The use of normal-
ized coincidence scoring is necessary because compounds

configurationsmissing) configurationsC3/configurationsC2

coincidencemissing) log(configurationsmissing) )
coincidenceC3 - coincidenceC2

configurationsC3(c, {af1 f2...fn}) )
c!/a00...0! a10...0! ... aUU...U!

configurationsC2(c, {ad1 d2...dn}) )
c!/aTT...T!aUT...T! ... aUU...U!

configurationsmissing) configurationsC3/configurationsC2

) aTT...T! aUT...T! ... aUU...U!/a00...0! a10...0! ... aUU...U!

) aTT...T!/a00...0! a10...0! ... a11...1!
* aUT...T!/aU0...0! aU1...0! ... aU1...1!
* ...
* aUU...U!/aUU...U!

) configurations(aTT...T, {ab1 b2... bn})

* configurations(aUT...T, {aU b2... bn})
* ...

* configurations(aUU...U, {aUU...U})

coincidencenorm ) coincidence/max(coincidence)

Chart 2. Calculation of Coincidence and P(C) Scoresa

a These two classes illustrate how randomization is performed in
order to calculate P(C) scores, when compounds are not tested in all
the assays. Notice how both the original assay activities and randomized
assay activities contain the same untested compounds indicated by
dashes (-), while the distribution of hits (1) and nonhits (0) changes.
Upon randomization, the entropy of the class increases, destroying the
coincidence originally present among the hits.
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in a perfectly uniform class, all having identical assay
outcomes, will not change after randomization, yielding P(C)
) 1.

For every class in each of the 33 cluster sets described
above, the respective assay annotations with #{A|c}>)2
were scored for normalized coincidence and P(C) and flagged
if they met either the P(C)< 0.01 or the normalized
coincidence< 0.10 cutoff.

Robustness of Assay Annotations.A compound’s assay-
activity annotations must also be reproducible among dif-
ferent cluster sets if they are to be useful descriptions of
compounds’ biological activity. Because there is a random
component in K-modal clustering, cluster sets will rarely
match identically, and thus the resulting definitions of
compound classes will differ slightly in composition and
possibly in their enrichment for various assay activities. To
measure the reproducibility of each compound’s assay-
activity annotations, the entropy-based coincidence scores
and their associatedp-values P(C) were employed. The
annotations of the cluster sets containing the same number
of clustersK were pooled together and compared, with
particular emphasis on theK ) 1360 cluster sets. If the same
assay activities were associated with a compound in every
cluster set, then the entropy of those annotations would be
low and the P(C) would be significant. The “modified”
coincidence score of a given compound’s annotations forM
assay activities scoring the presence or absence ofM assay
activities among 3 cluster sets is

wherea000 counts the number of times a given activity is
seen in a compound’s annotations in zero sets, anda111counts
the number of times a given activity is seen in a compound’s
annotations in all 3 sets.

Once the raw coincidence score is calculated, the prob-
ability of the observed coincidence score is also estimated
by comparing it to the scores of 200 randomized class
annotations in the same manner described above (yielding a
minimum possible score of 1/200).

Similar comparisons were performed using cluster sets
containing different numbers of clustersK (cluster sets having
K ) 1360 compared to cluster sets havingK ) 2720 for
example).

Accuracy of Coincidence Score.To assess the ability of
the P(C) score to discriminate between compound classes
having single target effects and those with side effects, a
test set of compound classes with known single target effects
was compared to a test set with significant side effects on
nonhomologous targets for the Chembridge Diverse Set E
library.

To identify compound classes with single-target effects,
the 4669 known bioactive compounds from the Chembank26

Small Molecule Bioactives Database were compared to the
16 320 compounds in the Chembridge Diverse Set E library;
47 known bioactives (and the compound classes containing
them) were identified in the Chembridge Diverse Set E
library. This list was supplemented with compound classes
containing 66 compounds published as bioactive in various
assays of this library.8-21 To identify compound classes with

side effects (having multiple targets), compound classes
scoring positively in two or more pure protein assays or
scoring positively in an assay for fluorescence and another
assay employing a nonfluorescent readout were identified.

The compounds identified as bioactive and the classes
containing them generally only had a single reported target
and were assumed to be specific since many of these
compounds were previously evaluated for side effects prior
to their publication or were optimized structurally: this does
not preclude the possibility that secondary targets of these
compounds may be observed at higher compound concentra-
tions or in other biological assays not tested; but for the sake
of this comparison, they will be labeled as “single target”
classes. The compound classes labeled as having side effects
were assumed not to be acting promiscuously by binding
multiple targets nonspecifically (which implies a common
mechanism of molecular aggregation56). Even if the assay
activities of compound classes labeled as having “side
effects” were the result of measurement error, those activities
should still be uncorrelated. Additionally, even if some
“single target” classes had weak side effects and some “side
effect” classes had some correlated assay activities, differ-
ences in assay outcomes should be seen between the two
groups as defined here, with the expectation that “single
target” classes will have more highly correlated assay
phenotypes in general.

The P(C) score was calculated for each of the above
compound classes in the test set that had two or more assay
annotations. The compound classes having a P(C) score less
than the 0.01-threshold were identified, and the false positive
and false negative rates of compounds with predicted single-
target effects were estimated; classes with zero or one assay
activity were not included in these estimates, even if those
classes contained known bioactive compounds, because all
possible biological activities were not necessarily measured
by the assays examined here. The false negative rate is
estimated as the percentage of “single target” classes having
insignificant P(C) scores (greater than 0.01), P(!D|S). The
false positive rate can be calculated using Bayes’s Rule, given
P(D) as the percentage the total classes passing the 0.01
threshold, P(D|S) as the percentage of “single target” classes
passing, and P(D|!S) as the percentage of “side effect” classes
passing. The false positive rate P(!S|D) is calculated using
the observed values of P(D), P(D|S), and P(D|!S) and the
solutions for P(S) and P(!S) (the percentage of classes with
single-target effects and the percentage with side effects,
respectively)

where

Compound Mechanism Hypotheses and Validation.The
coincidence scores identify compound classes with likely
single target relationships but do not provide information
about the compound class’s mechanism of action or specific
biological target without further analysis. To this end, the

configurations(M, {abbb}) ) M!/a000! a001! ... a111!

such that coincidence) log(configurations)

P(!S|D) ) P(D|!S) [1-P(S)]/P(D)

P(S) is obtained by solving
P(D) ) P(S) P(D|S) + P(!S) P(D|!S)

and P(!S)) 1-P(S)
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highly coinciding assay annotations were interpreted and used
to generate hypotheses about the compounds’ mechanisms
of action.

Having collected the class annotations{{A|c}}coincidencethat
met the normalized coincidence or P(C) cutoffs, each class
was reviewed individually using knowledge of the assay
protocol and underlying biology, literature searches, and
consultation with the original screeners. After review, each
compound class’s assay annotations were scored in six
hypothesis categories: (1) fluorescence, (2) luciferase inhibi-
tion, (3) nonspecific transcriptional upregulation, (4) toxicity,
(5) cell cycle arrest, and (6) specific biological mechanism.
The scores for the first five categories were obtained by
simply counting the number of assays that suggested each
mode of activity. Toxicity is suggested by low signals in
multiple cell-based assays. Compound fluorescence is sug-
gested by classes scoring in multiple assays employing a
fluorescent readout, and luciferase inhibition is similarly
suggested by compound classes with low signals in multiple
assays that use a luciferase reporter. Nonspecific transcrip-
tional upregulation (most likely metal chelation) was sug-
gested by high signals in multiple assays employing artificial
promoters. “Cell cycle arrest” was suggested by activity in
multiple assays that measure cell cycle arrest directly (a
frequently observed phenotype that may arise via many
possible targets.) Last, the “specific mechanism” hypotheses
were assigned to compound classes scoring in assays that
target a specific pathway (often performed on cellular extracts
or purified proteins) or classes that had an interesting pattern
of assay activity suggestive of a common mechanism. Among
the most interesting were classes that implicated a specific
biological pathway in the cell cycle arrest phenotype. A
single assay annotation could often be assigned to more than
one category, and there was no limit on the number of
categories for which a single class could score.

As described earlier, 47 known bioactives from the
Chembank26 Bioactives database were identified in the
Chembridge Diverse Set E library, and those bioactives that
belonged to classes having multiple assay activities and
significant P(C) scores (less than the 0.01 threshold) were
found. The known activities of these compounds were then
compared to the classes’ assay annotations to determine how
well the known activities of these compounds can be revealed
using only the classes’ assay annotations. This provides
critical evidence as to whether the compound classes with
significant P(C) scores indicate single-target effects and also
whether the assay annotations provide solid hypotheses about
compound mechanism of action that can motivate specific
follow-up experiments.

RESULTS AND DISCUSSION

Numerous compound classes were found to contain
multiple assay activities, some of which confirmed known
compound activities. In addition, the coincidence score P(C)
correctly identified many compound classes as having
biological activity resulting primarily from compound action
on a single target.

Scoring Compound Classes.Examination of the distribu-
tion of assay activities over the compound classes{#{A|c}}
revealed that multiple assays had a tendency to score
positively (having Pa+<0.005) in the same compound classes

(Chart 3). In addition, after comparing the observed distribu-
tion of assay activities to distributions obtained from 10 sets
of randomized class assignments (represented by box plots),
it was apparent that classes with multiple assay activities
occurred far more frequently than would be expected by
chance alone (Chart 4). A handful of classes in each cluster
set were active in seven or more assays: such an occurrence
would be highly unlikely by chance (Chart 4).

The presence of compound classes with multiple assay
activities may be the result of chemical modulation of a
single biological target affecting each of those assays or a
common mechanism for systematic error such as fluores-
cence. Alternatively, multiple assay activities may result from
chemical action on different biological targets. The nature
of these numerous compound classes with multiple assay
activity annotations will be explored further.

Robustness of Assay Annotations.In addition to their
prevalence, most of the compound assay annotations were
reproducible and largely independent of cluster set. Assay
annotations derived from cluster sets of the same size were
far more reproducible than would be expected by chance
alone. The following graph shows the average modified P(C)
measuring the coincidence of each compound’s assay an-
notations among the three cluster sets of the same size
(K)1360 only) as a function of the compound’s median
number of annotations #{A|c} in the three cluster sets (Chart
5). Notice that the average modified P(C) score is well below
the expected 50% value for two or more annotations
suggesting that the compounds’ class annotations were highly
reproducible.

A similar graph compares the modified P(C) scores of the
three pairs of cluster sets forK ) 1360 andK ) 2720 as a
function of the median number of annotations #{A|c} for
each compound (see Supporting Information C). The modi-
fied P(C) scores are still below the expected value of 50%
but clearly show less significance than the same-sized clusters
described above. The larger the size differences between
cluster sets, the less reproducible the class annotations
associated between them. Nonetheless, because the com-
pound’s assay annotations are reproducible between different

Chart 3. Distribution of Assay Annotations over Compound Classesa

a Multiple assay activities are concentrated in a small number of
compound classes. Each color indicates the frequency distribution of
classes having multiple assay activities for a given cluster set. More
than two activities are seen in compound classes of all sizes in each of
the 33 cluster sets shown. Multiactivity classes could be the result of
compound action on either a single target or multiple targets.
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cluster sets, the assay annotations are somewhat robust to
cluster choice.

Coincidence Score.The prevalence and reproducibility
of the compound classes’ multiple assay annotations moti-
vated analysis of each compound class’s pattern of assay
activity. To this end, the degree to which multiple assay

activities coincided within each compound class was mea-
sured with the coincidence score. The percentage of com-
pound classes in each cluster set meeting the normalized
coincidence (coincidence<0.10) and P(C) (P(C)<0.01) cut-
offs is indicated by the black line in this chart (Chart 6).
Normalized coincidence scores below 0.10 are seen in
smaller classes (with fewer than 6 compounds) for the cluster
sets withK ) 1360, 2720. Significant P(C) scores were
observed in both very large (100+ compounds) and small
(6-12 compounds) classes suggesting that certain assay
activities were correlated with each other for the entire
library, not just inside small and medium-sized structural
classes. Although the cutoff values for the coincidence and
P(C) scores were chosen somewhat arbitrarily, few classes
met both thresholds suggesting that the normalized coinci-
dence and P(C) scores were complementary. The coincidence
score compared well to a similar statistic, Shannon’s Entropy,
measuring the significance of the observed number of assay
outcomes within a compound class (see Supporting Informa-
tion B).

The percentage of classes having significant coincidence
scores drops steadily with increasingK (Chart 6). This is an
expected consequence of having more clusters available to
segregate active from inactive compounds. Nonetheless, the
prevalence of compound classes with highly coinciding assay
activities suggested compound action on single targets.

Accuracy of Coincidence Score.Classes identified as
primarily “single target” (because they contained bioactive
compounds with single known targets) had significant P(C)

Chart 4. Distribution of Assay Annotations in Cluster Sets vs Box Plots of Randomized Dataa

a Shown here is the distribution of assay activities from representative cluster sets withK ) 2, 21, 170, and 1360. Comparing the observed
distribution of assay activities for each cluster set (gray bar graphs) to the distribution obtained from randomized data (black box plots), it is clear
that compound classes with more than two assay activities occur far more often than predicted by chance. The box plots indicate the assay activity
distributions observed in 10 randomized data sets; compound classes with more than two assay activities are highly unlikely by chance alone, in
stark contrast to the observed distributions indicated in bar graph form. The frequency of multiple-assay activity compound classes suggests that
common mechanisms of action by these compounds may be inducing multiple assay phenotypes.

Chart 5. Median Number of Assay Annotations vs Significance of
Their Coincidence P(C) for Each Compound (E)0.50)a

a The average modified P(C) score used to measure the reproduc-
ibility of a compound’s assay activity annotations is plotted as a function
of the median number of assay annotations assigned to a given
compound among the three cluster setsK ) 1360. A compound’s assay
activities among the different cluster sets coincide significantly more
than expected (as indicated by P(C)<0.50) suggesting that a com-
pound’s assay activity annotations are somewhat robust to cluster set
choice. Perfect reproducibility of a compound’s assay activity annota-
tions is rarely seen among the three cluster sets, but a significant number
of a compound’s assay annotations will be reproduced in the three
cluster sets.
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scores at a far higher rate than classes identified as “side
effect” classes, within the test set described above. The
following charts examine classes in three cluster sets (K )
1360) and show the statistical significance of the observed
number of P(C)< 0.01 in the “single target” classes relative
to the “side effect” classes, the observed false negative rate
P(!D|S), and the false positive rate P(!S|D) calculated using
Bayes’s Rule (Chart 7, 8). Note that “single target” classes
had significant P(C) scores at a far greater rate than the rest
of the test set, with ap-value much less than 0.01. Similarly,
the “single target” classes (classes containing known bioac-
tives) had significant P(C) scores at a far greater rate than
the rest of the library (p<0.01 for each cluster set). In
addition, the false negative rate (percentage of single target
classes not passing the threshold) hovered around 55%, while
the false positive rate was calculated around 12% using
Bayes’s rule (implying the predictions of compound classes
with single target effects were 88% accurate). Generally
speaking, a high false negative rate is tolerable if it means
a lower false positive rate, because testing false positives
wastes experimental resources while false negatives carry
little cost when there is an abundance of active compound
classes to pursue. Furthermore, a high false negative rate
(“single-target” classes missing the coincidence threshold)

could be indicative of compounds with previously unknown
side effects.

In addition to the calculated 12% false positive rate (or
equivalently, the 88% accuracy), it is also encouraging that
classes predicted to be single-target contained many known
bioactive compounds. Out of the∼50 compound classes
predicted to have primarily single target effects in the entire
library roughly a dozen (∼21%) of those compound classes
contained known bioactives. After removing the 12%
predicted false positives, this leaves unexplored∼30 com-
pound classes which may contain single target compounds.
In some cases, the single target effects will be trivial, such
as inhibition of a luciferase assay reporter or unspecified
toxicity, but in other compound classes, there could be
illuminating chemical genetic relationships relating multiple
interesting assay phenotypes to single protein targets.
Furthermore, since the cluster sets slightly differ, their
compound classes’ assay annotations will differ slightly as
well, so among the three cluster sets, there could be many
more compound classes with unexplored “single target”
relationships.

Compound Mechanism Hypotheses and Validation.
Each of the compound classes with highly coinciding assay
activities was assigned one or more hypotheses about its
mechanism of action. The following chart shows the
distribution of the hypothesis types including fluorescence,
luciferase inhibition, transcriptional upregulation, toxicity,
cell cycle arrest, and specific biological mechanism across
the classes contained in each cluster set (Chart 6). As noted
earlier, the percentage of classes containing annotations
passing the normalized coincidence/P(C) thresholds de-
creased as the number of clustersK increased (Chart 6), but
the total number of such classes still increased with increasing
K. This is also true for classes annotated with each of the
six hypothesis types (Chart 6).

“Toxicity” was the most common hypothesis generated,
followed by “fluorescence”. Nonspecific “transcriptional
upregulation” was observed the least. The “luciferase inhibi-
tion” hypothesis was generated frequently, but the frequency
of the “luciferase inhibition” hypothesis was likely inflated
by the presence of toxic compounds in the library that
depressed the signal of the luciferase-based assays which
were all cell-based: therefore in Chart 6 we label the
“luciferase inhibition” category as “luciferase inhibition/

Chart 6. Frequency of Activity Hypothesis vs Number Clusters (K)a

a The frequency of various hypotheses about a compound class’s
mechanism is shown as a function of the number of compound classes
in each cluster set. The percentage of classes with significant P(C) scores
steadily decreases as a function of the number of clusters in the set.
Toxicity (brown circles) is the most commonly generated hypothesis,
merely indicated by low signal in multiple cell-based assays. Compound
classes with potential fluorescent (orange triangles) or luciferase
inhibiting (blue diamonds) activities are seen as well: the luciferase
inhibition category may also include toxic compounds as discussed in
the text. The least common hypothesis generated was nonspecific
transcriptional upregulation (red squares), which was suggested by a
high signal in multiple assays that utilize artificial promoters. An
intermediate number of compound classes were given “cell cycle arrest”
(blue triangle) or “specific mechanism” (green square) hypothesis
indicating annotations in multiple cell cycle arrest assays or various in
vitro assays, respectively. Classes that were annotated with both of
these hypotheses were among the most interesting, because they
implicated a specific biological pathway in the cell-cycle arrest
phenotype.

Chart 7. Significance and False Negative Rate of the “Single Target”
Classes P(C)a

a The sample data set of “single target” and “side effect” compound
classes and their P(C) scores were examined for three clusters sets (each
indicated by a row in the table). The column marked “All” indicates
the total number of classes in the test set having two or more assay
activities, and “D,All” indicates those that also had significant P(C)
scores. The columns marked “Single” and “D,Single” indicate the
number of “single target” classes with two or more assay activities
and the number of “single target” classes that also had significant P(C)
scores, respectively. Thep-values for the observed number of “single
target” classes having significant P(C) scores in this test set is well
below 1%. The false negative rate (i.e. the fraction of “single target”
classes having poorly coinciding assay activities) is also shown.
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toxic”. The most interesting hypotheses, “specific biological
mechanism” and “cell cycle arrest” were among the least
common, appearing in 28-35 compound classes in each of
the cluster sets withK ) 1360. The relative frequency
observed for each hypothesis type is probably more influ-
enced by the popularity and familiarity of certain assays,
particularly those measuring toxicity and cell cycle arrest,
than by the actual prevalence of each activity in the entire
library. For example, most assays requiring cell growth may
suggest compound toxicity if the assay signal is low for that
compound. Additionally, numerous assays were developed
that measured progression of the cell cycle under various
conditions because of the tremendous therapeutic value of
selectiVecell cycle arrest in the treatment of various cancers
and other diseases. By comparison, only a handful of assays
used luciferase reporters (but the frequency of the “luciferase
inhibition” hypothesis is still probably inflated due to the
reasons noted above.) Furthermore, in almost every case, a
class annotation could be associated with two or more of
the hypothesis categories, so that the frequency of each
hypothesis type does not necessarily represent its actual
prevalence in the library. Despite these ambiguities, it is
exciting to see that potentially hundreds of compounds
distributed over dozens of classes contain interesting cell
cycle modulating activities or implicate specific biological
mechanisms.

Below are five sample compound classes, each containing
known bioactive molecules or FDA-approved drugs, with
assay annotations that strongly suggest the known molecular
mechanism. These examples inspire optimism about the role
of coincidence scoring in future efforts to identify compounds
with novel mechanisms of action using primary screening
assay data.

“NIH (2-Hydroxy-1-naphthylaldehyde isonicotinoyl hy-
drazone), Iron Chelator”. NIH (also known as 311) (Chart
9) is a cell-permeable iron Fe3+ chelator.57 The antiprolif-
erative properties of NIH in many neoplastic cell lines have
been well documented58,59 and are believed to be a direct
result of iron chelation.59-61 A growing body of evidence
suggests that the mechanism of action of NIH’s antiprolif-
erative effects may be transcriptional59,62,63 among other
possibilities.59,64,65 By forming complexes with iron atoms
Fe3+, NIH disrupts iron regulatory proteins leading to the
transcriptional upregulation of cell cycle inhibitors such as
p21(CIP1/WAF1),59,62 GADD45,59 and Ndrg1.63 While the
exact relationship between transcriptional upregulation and

growth arrest remains controversial, both biological activities
are established for many iron chelators.59,65

Class 1195 of cluster set 1360.2 contained NIH and scored
positively in eight assays that suggest nonspecific transcrip-
tional upregulation and low cell growth. Two of these assays
indicate upregulation of transcription by an artificial gene
reporter (four assays out of the original 48 employ artificial
gene reporters that suggest possible transcriptional upregu-
lation as indicated by elevated assay signals). Therefore, a
“transcriptional upregulation” hypothesis was assigned to this
compound class. Six other assays indicated low cell growth,
suggesting a “toxic” or possibly a “cell cycle arrest”
hypothesis. Both “transcriptional upregulation” and “toxicity/
cell cycle arrest” corroborate the known biological activity
of NIH as an iron chelator; other compound classes having
these same two phenotypes may also be iron chelators. In
total, class 1195 containing 27 compounds scored in eight
highly coinciding assays (P(C)< 0.00025), suggesting that
these phenotypes were induced by a common mechanism,
namely iron chelation. Ten of the 27 compounds in this class
were not hits in any of the 8 assays, with the activity
significantly concentrated in the rest of the compound class
as detected by the coincidence score. Classes inK ) 1360
or 2720 cluster sets containing NIH reliably reproduced the
toxic phenotype and less reliably reproduced the transcrip-
tional upregulation phenotype (probably due to the smaller
number of assays directly utilizing transcription) with a
probability p < 0.005.

Fluorescein/FITC, Fluorescence.Fluorescein (Chart 10)
is an FDA-approved drug used in fluorescein angiography,
a technique used to visualize the blood vessels at the back
of the eye to diagnose retinal abnormalities.66 Fluorescein
isothiocyanate (FITC) (Chart 10) is a closely related molecule
used to label antibodies and proteins in many biological
assays, such as fluorescence polarization assays which
measure protein binding.67,68 Six out of the 48 ICCB assays
studied employ FITC or GFP reporters, both of which emit

Chart 8. Estimated False Positive Ratesa

a The false positive rate P(!S|D) was calculated using Bayes’s rule.
For each cluster set, the number of clusters having two or more assay
annotations is listed in the column “Total” and the number that also
have P(C)<0.01 is listed in the “D” column. P(D) is the fraction of
these multiple-assay classes that have significant P(C) scores, and
P(D|!S) and P(D|S) indicate the fraction of “side effect” classes and
“single target” classes (having multiple assay activities) receiving
significant P(C) scores. Using these estimators, the false positive rate
P(!S|D) was calculated between 8 and 15% using Bayes’s rule. Classes
not having two or more assay activities were not included in these
estimates, even if those classes contained known bioactive compounds,
because not all activities were necessarily assayed.

Chart 9. NIH (311 or 2-Hydroxy-1-naphthylaldehyde Isonicotinoyl
Hydrazone)a

a NIH, the known metal chelator, was assigned to a class that
appeared to induce nonspecific transcriptional upregulation and inhibit
cell growth, confirming its known phenotypes and suggesting metal
chelation as a common mechanism of action.

Chart 10. FITC and Fluoresceina

a Fluorescein and its close structural homologue FITC are shown.
Prior to the removal of fluorescent compounds from the assay data
set, fluorescein was assigned to a compound class scoring in multiple
assay employing a fluorescent readout including some using FITC,
suggesting compound fluorescence as a common mechanism of action.
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at the 520 nm peak wavelength, one control assay directly
measured compound fluorescence at 520 nm, and two other
assays employ reporters that emit at the nearby 580 nm peak
wavelength. With this in mind, it was not surprising that a
class of compounds containing fluorescein emerged from the
above analysis with a “fluorescent” hypothesis (prior to the
removal of fluorescent compounds from the assay data set).

Class 1076 of cluster set 1360.1 containing fluorescein
scored in 10 highly coinciding assays. Eight of these assays
employ a fluorescent readout and suggest that these com-
pounds score as false positives due to compound fluorescence
(this phenomenon was observed before fluorescent com-
pounds were deleted from the assays as described above.)
The two other assays, not shown, suggested other activity.
Although two other assays scored in this class, the “fluo-
rescent” hypothesis was much more compelling because it
was inspired by 8 assays. Additionally as noted above, no
class would be predicted to have 8 or more assay activities
by chance alone. In total, the 10 assay activities in class 1076
containing 10 compounds coincided with a P(C) estimated
below 0.00025, suggesting a single mechanism (in this case
compound fluorescence).

The presence of two other assay activities not obviously
connected to compound fluorescence did not significantly
diminish the significance of the coincidence score. One of
these assay activities is directly attributable to inhibition of
protein arginine methyltransferase, since its known inhibitors
AMI-4, AMI-5, and AMI-620 are present in this compound
class. However, removal of the most fluorescent compounds
from all but one of the assays employing a fluorescent
readout left the remaining assay activities (including one
assay directly measuring compound fluorescence) with
insignificant P(C) scores correctly suggesting that the argi-
nine methyltransferase and fluorescence activities were
uncorrelated and the result of different mechanisms.

This class of fluorescein homologues illustrates both the
strength and weakness of the coincidence score. While the
significant P(C) score seems to verify the presence of
compound action by a single mechanism inducing many of
the assay activities, it does not guarantee that all observed
assay activities arise via that mechanism given the protein
arginine methyltransferase inhibitors present. Nonetheless,
the presence of multiple correlated assay phenotypes does
significantly inform the search for the single target or
mechanism, as it does for this case of compound fluores-
cence, and this could help focus experimental efforts that
seek to optimize the compounds in this class structurally in
order to remove undesired side effects. At some point, too
many side effects will render the P(C) score insignificant,
deprioritizing those compound classes in follow-up studies.
Moreover, when a given assay activity (fluorescence) is not
so over-represented, this problem would generally not occur
(which is why the analysis was repeated after removing
fluorescent compounds.) Other classes containing fluorescein
in other large-K cluster sets (K)1360 or 2720) showed
similar assay coincidences and had significantly reproducible
class annotations according to the modified coincidence
scores comparing cluster sets with the same K and different
K (p<0.005).

Pifithrin-R, p53, and Luciferase Inhibitor.Pifithrin-R
(Chart 11) is a known apoptosis inhibitor, which acts by
inhibiting p53, a known tumor suppressor.69,70Pifithrin-R has

previously been evaluated as a potential treatment for side
effects of cancer radiation treatment and chemotherapy, in
hopes that it could prevent the death of healthy cells.69,70 It
was also recently reported that pifithrin-R could inhibit firefly
luciferase and protein constructs containing firefly luciferase
which are commonly used as assay reporters.71 The recent
report cautioned about the possibility of pifithrin-R causing
false positives in biological assays using firefly luciferase.

Class 830 of cluster set 1360.2 contains pifithrin-R and
scored positively in two assays that used a luciferase assay
reporter and two assays that indicate growth defects. The
low signal in two of these assays suggested either toxicity
or direct inhibition of luciferase, while one indicated cellular
toxicity and another identified an observed growth defect.
The compound class was ultimately assigned both a “lu-
ciferase inhibition” hypothesis and a “toxic” hypothesis. In
total, class 830 containing 12 compounds scored in four
assays that coincided with a probability P(C)) 0.2742,
failing to meet the 0.01 threshold and suggesting the presence
of side effects. Appropriately, the hits from the two luciferase
reporter assays, considered independently of the other two
assays, coincided well with a P(C)) 0.00125, consistent
with their common mechanism. In this case, both activity
hypotheses appear to be corroborated by the two known
activities of this compound class, luciferase inhibition and
growth irregularity (p53 inhibition). Furthermore, the hy-
potheses were assigned an insignificant P(C) score, correctly
suggesting that pifithrin-R activities were the result of action
on different biological targets. The luciferase inhibition and
toxicity phenotypes were also significantly reproducible
(p<0.005) in classes from theK ) 1360 or 2720 cluster
sets containing pifithrin-R. It is worth noting that while
pifithrin-R has at least one side effect, the luciferase inhibition
side effect is a tolerable one with the benefit of hindsight,
but one could imagine the confusion created by pursuing

Chart 11. Pifithrin-Ra

a Pifithrin-R is a known p53 inhibitor that has also been reported to
inhibit firefly luciferase. This compound was assigned to a class that
appeared to inhibit luciferase reporter-based assays and cause growth
defects. Its coincidence score P(C) did not meet the 0.01 threshold,
correctly suggesting that these two phenotypes were induced by different
biological targets.

Chart 12. Nocodazole and Mebendazolea

a The known drug mebendazole and the bioactive nocodazole both
are known microtubule destabilizers, and both compounds were
assigned to a class that appeared to induce cell cycle arrest (specifically
in mitosis) and disrupt endosome trafficking. The coincidence score
suggested a common mechanism of action inducing these assay
phenotypes. The comparison of this class’s assay annotations to another
class containing known microtubule destabilizers suggests that this
pattern of assay annotations may be characteristic of microtubule
destabilizers in general, arguing for the discernability of a specific
hypothesis about a compound’s mechanism of action from its assay
activities alone.
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pifithrin-R as lead with only the benefit of two sets of
unrelated assay phenotypes.

Nocodazole and Mebendazole, Microtubule Destabilizers.
Nocodazole and mebendazole (Chart 12) are both known
microtubule destabilizers. Mebendazole is an FDA-approved
drug used to kill gastrointestinal parasitic worms.72,73 By
destabilizing microtubules, both compounds arrest cells in
mitosis and yield relevant therapeutic value.74-78 Nocodazole
and mebendazole’s ability to block vesicle trafficking inside
the cell has also been noted.76,79

Class 380 of cluster set 2720.3 contains both nocodazole
and mebendazole and scored positively in two assays that
suggest mitotic arrest, one that suggested growth inhibition
and another assay that suggested disruption of endosome
trafficking (Chart 13). The “cell-cycle arrest” phenotype
(specifically in mitosis) corroborates the known arresting
properties of nocodazole and mebendazole. The disruption
of endosome trafficking also corroborates nocodazole’s
known ability to disrupt vesicle trafficking. Arguably, the
combination of mitotic arrest and the disruption of endosome
trafficking, which relies on the microtubule network, strongly
suggests the “specific biological mechanism” hypothesis that
the spindle checkpoint is being triggered by possible micro-
tubule destabilization;77 therefore, the known target of these
compounds could potentially be predicted by interpreting the
assay phenotypes alone. In total, class 380 containing 21
compounds (nocodazole in duplicate plus one copy of
mebendazole) scored in 4 assays that coincided with a
probability of P(C)) 0.014, suggesting a single mechanism
(in this case microtubule destabilization.) Eleven out of the
21 compounds in this class contained no hits in any of the
four assays with all the activity significantly concentrated
in the remainder of the class, as detected by the significant
P(C) score. These assay annotations, particularly of the
mitotic arrest phenotype, were also significantly reproduced
in other classes containing either nocodazole or mebendazole
according to the modified coincidence scores discussed above
(p<0.005) for the large-K cluster sets.

Microtubule Destabilizer “Class 2”.A recent publication
identified a class of 17 microtubule destabilizers8 (Chart 14).
This class was originally identified by a high-throughput
TG-3 cytoblot assay of A549 lung epithelial cells for a
protein nucleolin that is specifically phosphorylated during
mitosis. In addition to inducing mitotic arrest, this class was
subsequently classified as microtubule destabilizing in a
follow-up assay using purified bovine brain tubulin, sup-
porting the conclusion that this class of compounds targeted
tubulin R/â directly, triggering the spindle checkpoint and
inducing mitotic arrest.8

Class 229 of cluster set 1360.2 contains 14 of the ICCB
microtubule destabilizers listed above, which score in 5
assays suggesting mitotic arrest, 1 assay suggesting endosome
trafficking disruption, and another suggesting involvement
of the spindle checkpoint. This class also scored positively
in two assays that suggested possible “toxicity” and one other
assay with no mechanistic interpretation. In total, class 229,
containing 29 compounds scored in 10 assays that coincided

Chart 13. Venn Diagram Showing the Highly Coinciding Assay Activities of Compound Class Containing Nocodazole and Mebendazolea

a The compounds in this class scored in four assays measuring mitotic arrest, inhibition of endocytosis, BrdU-incorporation (cell growth), and
mitotic arrest (listed clockwise starting at the top). The hits across these four assays are highly coinciding with a significant P(C) score estimated
around 0.014. Larger circles next to a compound structure indicate a compound that scored in more assays, and smaller circles indicate a compound
that scored in fewer assays: Mebendazole has the largest circle because it scored in all four assays, and both copies of nocodazole have medium-
sized circles because they scored in three assays. The colors of the circles correspond to the colored regions of the 4-way Venn diagram indicating
the hit compounds held in common by each assay (each assay is represented by a ring). Notice how some compounds have multiple assay activities,
while others (including nine not shown) have no observed activities, suggesting correlation among the assay hits. If the hits within this compound
class were randomly assigned, the corresponding chart would have more shaded regions in the perimeter rather than the center as seen here.

Chart 14. Consensus Structure of Microtubule Destabilizer “Class 2”a

a “Class 2” has published activity inducing mitotic arrest by
destabilizing microtubules. These compounds were assigned to a
compound class that scored in assays measuring mitotic arrest,
disruption of endosome trafficking, and even one assay measuring
involvement of the spindle checkpoint. These assay activities strongly
suggest class 2’s known microtubule destabilizing activity and closely
parallel the assay activities assigned to another class containing other
known microtubule destabilizers, nocodazole and mebendazole.
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with an estimated P(C)) 0.00025, suggesting a single
mechanism (microtubule destabilization). These annotations
were significantly reproduced in other classes from cluster
sets withK ) 1360 or 2720 that contained any of the 14
ICCB microtubule destabilizers (p<0.005) according to the
modified coincidence scores.

Impressively, this class scored in all the assays in which
class 380 (containing nocodazole and mebendazole) scored.
Not only does this suggest the same “cell-cycle (mitotic)
arrest” hypothesis due to the microtubule destabilization as
for nocodazole and mebendazole, but also these two ex-
amples argue strongly for the generality of a very specific
hypothesis about a compound’s biological mechanism ob-
tained by only using primary assay data. Even if the pattern
of assay activities is not an intuitive one, such that no obvious
biological mechanism is suggested, if one class’s assay
annotations match the annotations of a class with a known
mechanism, then one could infer the same potential biological
mechanism for each class.

CONCLUSIONS

Selection of leads for follow-up from phenotypic assays
can be enhanced by examination of those leads’ activity in
other primary assays. Using the coincidence score to evaluate
the pattern of assay activities within a compound class can
identify the best leadssthose primarily having single target
effectssfor follow-up studies. Additionally, the pattern of
assay activities of a given compound class can inform the
search for that class’s compound target or mechanism and
better classify its phenotype.

It is important to note that generating specific target or
mechanism hypotheses from compound classes’ assay an-
notations still requires the same biological intuition and
literature review used in conventional low-throughput chemi-
cal genetics experiments. However, hypothesis generation
may be enhanced by coincidence scoring because it can save
time otherwise spent testing intractable leads, particularly
those with side effects on nonhomologous targets, and the
assay outcomes of a compound class can aid the selection
of follow-up assays even when a specific target is not
suggested for the compound class.

The use of coincidence scoring may be further refined as
the quality of high-throughput assay data improves (through
the use of compound IC50s for example). Coincidence
scoring could also be used to evaluate the assay activities of
small combinatorial libraries to identify side effects of
selected leads and their structural homologues. Furthermore,
coincidence scoring may have applications in the high-
content screening of individual compounds in order to
measure the degree to which a compound’s dose-response
curves in different assays coincide as part of efforts to
structurally optimize compounds and remove side effects.

Target identification remains a daunting problem, and
target identification through assay annotations alone appears
to be limited to special cases. Underneath the goal of target
identification is the need to identify compounds with
interesting combinations of assay phenotypes resulting from
chemical action on a single target. To this end, coincidence
scoring may have a role.
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