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Abstract

Scalable sequence–function studies have enabled the systematic study and
cataloging of hundreds of thousands of coding and noncoding genetic vari-
ants in the human genome.This has improved clinical variant interpretation
and provided insights into the molecular, biophysical, and cellular effects
of genetic variants at an astonishing scale and resolution across the spec-
trum of allele frequencies. In this review, we explore current applications
and prospects for the field, and outline the principles underlying scalable
functional assay design, with a focus on the study of single-nucleotide cod-
ing and noncoding variants.
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INTRODUCTION

Large-scale DNA sequencing has fundamentally transformed our ability to explore the mech-
anisms of disease biology throughout the life sciences. The accessibility of genomic technolo-
gies is altering patient management in the clinic and empowering molecular, biophysical, and
cellular studies at increasing scale and resolution. Here, we review the utility and application of
sequence–function studies in the large-scale functional assessment of comprehensive sets of hu-
man genetic variants, with a focus on single-nucleotide variants (SNVs).We outline the principles
underlying scalable functional assay design and present a framework for choosing among alterna-
tive model systems and experimental methods. While this review is focused on cell-based assays
of SNVs, the same principles may apply across a range of model systems and types of genetic
variation.

A primary goal in the field of human disease genetics is to connect genetic loci to disease-
and trait-relevant phenotypes. Building on the initial human reference genomes, researchers have
made great progress toward cataloging genetic variation (1, 24, 101, 119, 121, 191). Genotyping
and sequencing of large population-scale cohorts [e.g., the UK Biobank (25), All of Us (6), and
Biobank Japan (141)], together with individual health, demographic, and lifestyle information,
have helped link thousands of genetic loci to human traits and diseases and continue to reveal
genetic associations with increasing size and diversity of sequenced cohorts (24, 181). Although
population-based studies are increasingly well powered to associate common variants with human
phenotypes, they are ill suited to making associations for rare and extremely rare variants—which
account for most genetic variation and tend to have a larger effect on disease phenotype than
common variation (33). Considering that nearly every possible single-nucleotide change currently
exists in the human population (122, 195), there is a need for the functional assessment of even
the rarest of variants. Here, large-scale sequence–function studies will be essential to inferring the
impacts of variants experimentally.Moreover,where common variants are concerned, these studies
can help identify the causal variant(s) across the thousands of common trait-associated haplotypes
(61). Moving forward, sequence–function studies will be essential to expediting the assessment of
genetic variation across the spectrum of allele frequencies, informing our understanding of the
mechanisms of variant dysfunction along the way.

Scalable multiplexed assays of variant effect (MAVEs) have thus far collectively probed the
functional consequences of hundreds of thousands of genetic variants, encompassing both coding
(18, 21, 28, 50, 73, 74, 77, 78, 81, 88, 96, 112, 124, 127, 143, 173, 175, 194, 196) and noncoding ele-
ments such as splice sites (15, 20, 72, 97, 102, 197) untranslated messenger RNA (mRNA) regions
(163), promoters (108), and enhancers (108, 135, 148). These variant-to-function (V2F) studies
can yield variant effect (VE) maps that capture functional impacts of all possible substitutions
within a target element, including impacts of variants not yet observed in humans.

A shared vision is now emerging for an atlas of VEmaps (11) that encompasses every functional
element in the human genome—a key requirement for which is the establishment of a coordinated
set of scalable functional assays.

THE PROMISE OF SEQUENCE–FUNCTION STUDIES

Sequence–function mapping can reveal the molecular and mechanistic impacts of coding
and noncoding genetic variation, facilitating clinical variant interpretation and by extension
therapeutic, preventative, and diagnostic strategies (54, 84). Here, we discuss the potential of
sequence–function studies and review progress toward a comprehensive human genome-scale
atlas of variant effects.
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Molecular and Mechanistic Interpretation of Genetic Variation

Most common genetic variants associated with human traits and diseases rest in noncoding regions
of the genome (24). Although these association studies typically use a subset of single-nucleotide
polymorphisms (SNPs) as “tags” representing a larger haplotype—which complicates identifying
which of typically many variants in the haplotype are causal—disease-associated haplotypes are
enriched for sites with increased chromatin accessibility and histone marks associated with en-
hancer regions, suggesting that causal variants often alter transcriptional regulation (66). Tran-
scriptional regulatory elements can have both proximal and distal effects and often involve mul-
tiple upstream regulators and downstream effector genes and noncoding RNAs, which further
complicates the identification of functional noncoding variants (34, 83, 169). Beyond the chal-
lenge of knowing which variants are functional, a lack of information connecting each element to
its target gene(s) obscures the effects of functional variants on downstream cellular and organismal
processes.

Systematic annotation of regulatory elements has been undertaken by large consortia [e.g.,
ENCODE (48), the Roadmap Epigenomics Consortium (157), the GTEx project (82), the Hu-
man Cell Atlas (12), FANTOM5 and FANTOM6 (52, 151), and HuBMAP (91)], with a growing
consideration for disease-relevant cell types and tissues at differing developmental stages and un-
der varying external influences. Quantitative traits such as chromatin accessibility, transcription
factor binding, and gene expression, combined with genotyping or whole-genome sequencing,
have provided maps of quantitative trait loci linking gene regulatory traits to genomic regions (19,
30, 82, 105, 177). These efforts have relied on technological, analytical, and conceptual advances
and are increasingly shifting to single-cell resolution (188). Furthermore, consortia-based efforts
such as the 4D Nucleome Project (41) have started to annotate the spatial organization of the
genome in an effort to understand long-distance transcriptional regulation. Sequence–function
studies targeting whole genetic elements rather than genetic variants have also been useful, at
increasing scales and across varying cell type and cell stage dependencies, for connecting sets of
putative regulatory elements to the genes they regulate and to downstream effects (44, 142, 165).
However, these have typically lacked the resolution to identify variant-level effects. Fortunately,
high-resolution mapping of regulatory elements in which all possible nucleotide substitutions are
interrogated is proving useful in detecting the specific nucleotides that are essential for the activ-
ities of these elements (108, 135).

In the case of coding variation, both predicting and interpreting the effects of amino acid sub-
stitutions on protein fitness are key to our understanding of molecular function and evolution.
Sequence–function studies are powerful tools that can reveal underlying biological mechanisms
at scale (64). In the field of structural biology, advances in in vitro and in silico methodologies, for
example, high-resolution experimental structure determination (16, 183) and structure prediction
by DeepMind’s AlphaFold (98), have made high-quality protein structures for much of the human
proteome widely accessible (190, 201). Combining these with VE maps can further the analysis of
structural and functional features, identifying at high resolution regions enriched for intolerance
to perturbations.Measurements of variant activity from sequence–function studies have also been
used to predict the three-dimensional structure of protein domains (158, 164) and to discriminate
among alternative predicted structures (3).

Clinical Variant Classification

The application of large-scale genetic sequencing as a clinical tool has been limited by our
inability to infer the functional impact(s) of most genetic variation observed in humans. Indeed,
most variants in the ClinVar database (120), which captures clinical variant reports, have been
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annotated as variants of uncertain significance (VUSs), meaning that it is unknown whether the
variants cause a clinical consequence (171). Many sources of evidence for variant interpretation
cannot be readily scaled to match the pace of variant discovery (e.g., family linkage studies) or are
less useful for rare variants (e.g., population-level association studies). Functional investigation
is often “reactive,” in that it is carried out after a genetic variant is identified in the clinic. This
model, however, can take months or years to move from variant identification to functional as-
sessment for patient diagnosis. Large-scale sequence–function studies can instead be “proactive”
(54, 60), in that exhaustive testing is done for all possible genetic variants, providing functional
evidence often in advance of a first clinical presentation.

Recently, the first proactive clinical use of a sequence–function map was reported in pediatric
patients presenting with cardiac arrest (60). In one case, clinical testing identified two VUSs in
cis in the calmodulin 2 (CALM2) gene, which encodes a calcium-binding protein, loss of which
is associated with cardiac arrhythmias (long-QT syndrome) and catecholaminergic polymorphic
ventricular tachycardia (37, 145). Neither variant had previously been observed in the population,
making variant interpretation difficult. By consulting a sequence–function map covering nearly all
possible missense variants in the calmodulin protein (encoded by CALM1,CALM2, and CALM3),
clinicians could conclude that the allele was a contributing cause of the patient’s disease phenotype
(60, 196).

Clinical variant classification has thus far been most widely applied in the coding portions of
the genome for genes linked to medically actionable outcomes (168). Although gene regulatory
noncoding variants are frequent causes of both common and rare diseases, clinical variant inter-
pretation for noncoding variants has largely been limited to variants in canonical splice sites and
untranslated regions of protein-coding genes (47, 120). Notable exceptions include large-effect
noncoding variants in founder populations, such as variants in multiple genes associated with
plasma lipid traits (92), and rare large-effect noncoding variants such as those in MEF2C caus-
ing severe developmental disorders (198) and in GJB1 causing X-linked Charcot-Marie-Tooth
disease (185).

Genetic variants as cataloged in ClinVar and the Human Gene Mutation Database (HGMD)
(176) have historically been labeled qualitatively (e.g., pathogenic versus benign) rather than quan-
titatively (i.e., by magnitude of effect). Noncoding regulatory variation lends itself to the quanti-
tative mapping of effects at the level of transcriptional activity and context-dependent impact on
molecular and cellular phenotypes. Examples of such context-dependent impacts include the FTO
obesity risk locus controlling expression of long-distance target genes IRX3 and IRX5 in adipocyte
progenitor cells and hypothalamic neurons (34, 170), a vascular disease–associated genetic variant
controlling END1 gene expression in endothelial cells (83), and genetic variants linked to SORT1
gene expression levels in the context of low-density lipoprotein levels (140).

The clinical annotation of noncoding gene regulatory variants is currently sparse.This is, how-
ever, likely to change as whole-genome (as opposed to whole-exome or gene panel) sequencing
becomes more commonplace in clinical diagnostics and as systematic sequence–function studies
provide proactive evidence to help classify noncoding variants (47).

Progress Toward a Human Variant Effect Atlas

Foundational technologies and sequencing advancements over the last decade have enabled the
disease genetics community to study the effects of genetic variation on thousands of nucleotides
across the human genome (Figure 1). To facilitate coordination and collaboration across more
than 100 research labs engaged in systematic sequence–function studies, the MaveRegistry forum
enables researchers to share progress on ongoing efforts (38). Examination of MaveRegistry
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Figure 1

The number of nucleotides in the human genome covered by sequence–function studies—approximately
80% of these are coding nucleotides. Here, we include studies that measure the effects of at least 50% of all
possible changes in the relevant coding or noncoding genetic element. For 2022, the solid bar indicates
nucleotides covered up to and including June; the dashed lines are an extrapolation for the rest of the year.

suggests that the journey to a complete VE atlas has only just begun; indeed, with maps for less
than 100 protein-coding genes published or underway, fewer than 1% of human genes have been
covered. There is still more to do for noncoding regions, for which even fewer VE maps have
been produced so far.

To store and disseminate sequence–function data, the MaveDB repository was created, with
subsequent efforts to comprehensively curate and deposit published data sets (161).MaveDB cur-
rently hosts VE maps for only a fraction of human protein-coding genes. Unfortunately, even VE
maps described in publications are sometimes unavailable, often because the data could not be ac-
cessed. This suggests that deposition of VE map data should be more widely required by journals
and funders.

In some sense, this is an overestimate of progress made, considering that sequence–function
studies are often carried out on partial sequences and do not capture the entirety of the protein
or noncoding element they interrogate. Moreover, VE maps may ultimately need to cover multi-
ple splice isoforms or contain measurements in multiple environments, genetic backgrounds, cell
types, or spatiotemporal contexts.

An ecosystem of tools is emerging to support the VE mapping effort. To aid in experimen-
tal planning and project selection, MaveQuest aggregates data resources relevant to identifying
target protein–coding genes and functional assays (115). Guidelines have been put forward for
experimental design, reporting, and evaluation of data (70) and to prioritize genes for sequence–
function studies based on their potential for improving variant interpretation in the clinic (114).
Software pipelines have been generated for analyzing VE maps (17, 53, 63, 89, 159), and multiple
tools exist to visualize data tailored specifically to both coding (90, 200) and noncoding sequences
[the Human Genetics Amplifier (HuGeAMP; https://kp4cd.org) and the Common Metabolic
Diseases Genome Atlas (CMDGA; https://cmdga.org)].

The field of sequence–function studies is rapidly growing, with new initiatives still emerg-
ing (e.g., the Atlas of Variant Effects Alliance, the International Common Disease Alliance, and
the National Human Genome Research Institute’s Impact of Genomic Variation on Function
Consortium). This is perhaps unsurprising, considering the need for functional, biophysical, and
mechanistic data across both variant and network levels. Although the path to a comprehensive
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atlas of human variant effects will be long, we are at an inflection point for V2F studies with a
plethora of foundational tools in place and promising signs of community coordination emerging.

CONSIDERATIONS FOR SEQUENCE–FUNCTION STUDY DESIGN

In designing a sequence–function study, the criteria for selecting both a target (e.g., a protein,
splice site, or regulatory element) and an experimental system will differ widely among individual
researchers. For instance, in selecting a target for study, a clinical geneticist might prioritize tar-
gets with a substantial VUS burden and for which definitive classification would impact therapy, a
molecular geneticist might prioritize a target if it is representative of a class of proteins or regula-
tory elements for which sequence–structure–function relationships have been less explored, and a
systems biologist might prioritize targets that are hubs in a gene regulatory network or signaling
process. Though the choice of experimental system is somewhat limited by the target in ques-
tion, it will be determined largely by researcher-specific interests and constraints, of which there
are many. We suggest the use of the three design axes of tractability, fidelity, and granularity as a
framework for choosing among alternative model systems and experimental methods.

Tractability reflects the ease of carrying out the assay at scale, which should be evaluated in
terms of project duration and availability of necessary infrastructure, as well as resource needs that
include supplies, sequencing, and labor costs—in other words, whether the assay can be economi-
cally scaled to interrogatemany variants.This axis should similarly capture the likely requirements
for engineering and validating the assay and should incorporate assay robustness, for example, by
capturing estimated failure rates.

Fidelity refers to how well the results of a scalable variant assay correlate with the relevant
human phenotype (which may range from the molecular to organismal level). Not every model
will capture the full range of a protein’s functions, some of which will be more relevant for the
disease phenotype. Evaluation of fidelity should extend to how reliably the assay will reflect the
human impacts of a variant in different environmental, developmental, and genetic contexts, as
assay parameters are varied to approximate these contexts.

Granularity considers the extent to which the assay provides insight into the mechanism(s) of
action for a given variant, where a comprehensive understanding of variant effects may require
multiple assays that collectively probe variant effects at molecular, cellular, and organismal
levels. In the context of gene regulatory variants, this may include the extent to which the assay
informs us about steps in the regulatory flow from variant impact to gene product in a given
spatiotemporal context.

Choosing an Assay to Inform Variant Classification

The impact of a sequence–function study as evidence for variant classification will be dependent
largely on both the target and the assay of choice—we discuss clinical genetic factors that influence
assay prioritization. Standards for clinical variant interpretation were established by the American
College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathol-
ogy (AMP) (154). These are consensus-based guidelines through which a variant is classified on
a discrete spectrum from pathogenic to benign on the basis of available evidence or as a VUS in
the event of uncertainty. Clinical and population data, as well as in silico and in vitro studies, are
assigned different evidence strengths in favor of a classification. These guidelines consider func-
tional studies to be strong evidence in support of a pathogenic (evidence code PS3) or benign
(evidence code BS3) variant impact. Notably, more recent recommendations have described vali-
dation approaches that can deem functional evidence as very strong in certain cases (23, 70). Thus,
large-scale functional studies have great potential to aid in clinical variant classification at scale.
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The ACMG/AMP guidelines for PS3/BS3 evidence codes suggest that functional data be con-
sidered only from “well-established” assays, although no criteria for these are provided (154). The
Clinical Genome Resource (ClinGen) has since introduced expert panels to refine variant classifi-
cation guidelines (156), though definitions of the well-established assay provided by these panels
have varied widely depending on the gene and disease, suggesting that this process can be highly
subjective (99).More recently, objective guidelines for the production and reporting of sequence–
function data have been suggested, with statistical procedures to empirically validate evidence
strengths (22, 70).

To maximize the clinical impact of sequence–function studies, one can prioritize target selec-
tion by considering actionability and “movability,” the likelihood that new functional evidence
will update the clinical interpretation of a VUS to one that is more informative (114). Estimates
of movability vary by gene and variant interpretation methodology and will change as additional
evidence sources (e.g., population-level associations and family linkage evidence) become more
abundant (54, 114). Functional evidence will also have a greater impact for variants observed more
often in the clinic; therefore, a greater priority might be given to a study target for which the av-
erage variant is more frequently clinically observed and medically actionable.

A commonmethod for validating an assay’s phenotypic readout is to perform small-scale testing
using a gold standard set of clinically annotated variants. However, reported variant classifications
may be erroneous and thus should not by default be considered definitive (85, 123). Furthermore,
it is important to consider that a variant may have an abnormal function and yet not cause disease:
Though abnormal function is a necessary condition, it is not sufficient to classify a variant as
pathogenic (154). A reduced-function (hypomorphic) variant may still allow normal cellular or
organismal function or may contribute to disease manifestation only in particular environmental,
developmental, or genetic contexts.

Surrogate Genetics and Nonobvious Disease Models

A nonobvious but crucially important point in assessing the fidelity of potential assays is that the
assay phenotype need not look like the human disease phenotype. For example, deficiency in the
gene MTHFR can cause both a molecular endophenotype (elevated blood homocysteine levels)
and a range of organismal phenotypes (including intellectual disability and abnormal walking).
An assay based on the ability of human MTHFR to rescue the growth of Saccharomyces cerevisiae
cells lacking the orthologousMET13 gene can be used to assess variant function, and while it may
seem surprising that yeast growth rate should predict intellectual disability and other organismal
phenotypes, this assay has been shown to faithfully reflect missense variant pathogenicity (125,
167, 194).

Where high-fidelity assays have been found in unicellular model organisms, they have often
proven to be highly useful in sequence–function studies given their tractability (18, 143, 179, 194,
196).Human cell lines are evidently an important single-cell model that can enable scalable variant
assays, though the choice of cell line will depend largely on the assay in question (78, 112, 124,
172).Where applicable, readilymanipulable cell lines (e.g.,HeLa orHek293 cells) are an attractive
option due to their high tractability; these can be employed so long as the target element and
any known obligate partners function in the cell line of choice and provided the model reliably
separates pathogenic variants from benign controls. In certain cases, however, the most highly
tractable systems cannot recapitulate complex disease-related functions.Here, one can choose the
most readily scalable model capable of successfully capturing the function in question. Where
no cognate phenotype in a unicellular organism or single-cell model can be found, multicellular
model organisms or human organoidmodelsmay be applied, although not yet at a scale compatible
with assessing tens of thousands of variants (5, 106, 132).
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The search for surrogate functional assays has largely been restricted to a relatively small
set of well-described model organisms. To broaden the search outside of the handful of well-
characterized models, sets of mutually orthologous genes can be systematically queried to identify
cognate phenotypes or phenologs; for instance, human genes associated with angiogenesis tend to
have orthologs in yeast that show lovastatin sensitivity (133).Using this approach, diverse uni- and
multicellular surrogate genetic models were uncovered for several human genetic diseases, and it
is likely that many high-fidelity assays in lesser-used model systems have yet to be discovered.

The Use of In Silico Predictors

Computational advances over the last decade have enabled the development of increasingly so-
phisticated computational models to predict the impact of both coding and noncoding SNVs. For
coding variation, most models are specialized to predict the impact of missense variants on pro-
tein function.These often use machine learning to exploit evolutionary conservation, trends in the
amino acid substitutions that occur most frequently across protein families, and protein structural
features (4, 32, 65, 94, 122, 144, 180, 199). The use of predictive models is an attractive option for
efficiently inferring coding variants exome-wide, especially given that a high-quality experimen-
tal atlas of sequence–function studies for all human disease-associated proteins and noncoding
elements remains largely incomplete. The utility of computational predictors in clinical variant
classification, however, remains limited considering the current ACMG/AMP guidelines, which
suggest that it be considered supporting evidence at best (154). Large-scale sequence function
studies could help refine and validate computational models, improving their accuracy and inter-
pretability and potentially providing more confidence in their clinical utility.

Variant effect prediction has been expanded outside of coding regions to include noncoding
gene regulatory SNVs and short insertions and deletions genome-wide (107, 122, 153). Extensive
genome-scale measurements of expression, chromatin accessibility, and epigenetic marks have fu-
eled the development of models to predict gene regulatory variant effects from DNA sequences
(13, 14, 29, 40, 103, 204). For noncoding gene regulatory SNV effect predictions, sequence-based
machine learning models are trained to predict phenotypic outcomes from a sequence on the
basis of genome-wide gene regulatory studies, including studies of chromatin accessibility and
chromatin immunoprecipitation sequencing (ChIP-seq) that inform about transcription factor
binding and histone marks, as well as Cap-Analysis of Gene Expression (CAGE) annotations of
gene expression.

While computational models, in combination with statistical fine-mapping and GWAS-QTL
(genome-wide association study–quantitative trait locus) colocalization approaches, have begun
narrowing associated noncoding regions to driver nucleotides, the resolution and interpretability
of such models remain limited. Despite the richness of genome-scale catalogs of expression and
epigenetic marks, high-resolution genome-wide gene regulatory data sets assayed across individu-
als and large-scale ground-truth evidence are still missing. Thus,models are often still insufficient
to provide compelling, high-confidence proof for a chain of causation that stretches from variant
to regulatory element to gene to downstream phenotype.

Sequence–function studies and computational predictors already complement one another in
the sense that, as orthogonal sources of evidence, they are considered independent and can both
be applied to interpret a given variant. There is, however, an opportunity to increase the value
of complementarity between computational and experimental variant analysis. For instance, some
computational predictors are beginning to incorporate VE maps in training (155, 199). More-
over, functional assays could be directed toward blind spots that prove resistant to computational
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Pipeline overview and methods of multiplexed sequence–function studies. Though each study will vary greatly, they follow a general
flow: generation of a variant library, delivery of the library into a model system, phenotypic readout, sequence-based demultiplexing,
and functional interpretation, with the option for further in silico prediction and refinement.

prediction (e.g., disordered regions, gain-of-function effects, and positions under strong positive
selection).

EXPERIMENTAL METHODS FOR SEQUENCE–FUNCTION STUDIES

Though there is considerable variation in the design of sequence–function studies, they generally
share a common flow: generation of variant library or library of guide RNAs for in situ editing,
delivery of library to a model system, phenotypic readout, sequence-based demultiplexing, func-
tional interpretation, and optional in silico prediction and refinement (Figure 2; Table 1). Here,
we review each step in the pipeline, bar prediction and refinement, with a particular emphasis on
phenotypic readouts. The methods discussed herein are by no means an exhaustive list.

Table 1 Methods discussed in this review are summarized for each stage of a multiplexed sequence–function study

Stages of multiplexed sequence–function studies Summary of methods discussed in this review
Variant library generation Error-prone PCR (26, 108), oligonucleotide-targeted editing (59,

89, 95, 109, 116, 196), DNA synthesis (35, 58, 136, 149), genome
fragmentation and DNA capture
(9, 187, 189, 192, 193)

Library integration into the model system Targeted integration (128, 129), random integration (79, 124),
transient episomal delivery (9, 135), in situ editing (27, 50, 57, 58,
117)

Phenotypic readout Variant effect on regulation Connecting regulatory elements to effector genes (44, 68, 69, 165),
functional dissection of regulatory elements (9, 189, 192, 193),
assessment of variant impacts on regulation (97, 108, 135, 148,
163, 197)

Variant effect on protein function Assessment of protein stability and abundance (112, 127),
measurement of protein interactions (173, 205), assay of
specialized protein function (28, 78, 88, 96, 173, 175)

Variant effect on cellular phenotype Fitness-based assays (18, 21, 74, 81, 143, 196), assays of morphology
or specialized cellular function (54, 86, 100, 118, 184)

Sequence-based demultiplexing Direct sequencing of variant alleles (45, 62, 196), sequencing of
variant-associated barcodes (7, 131, 196)

Functional interpretation Computational frameworks for coding variant studies
(17, 53, 63, 89, 160) including imputation of unmeasured variants
(80, 196), and MPRA-type studies (9, 10, 49, 79, 193)

Abbreviations: MPRA, massively parallel reporter assay; PCR, polymerase chain reaction.
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Generating a Variant Library

The first step in a sequence–function study is typically the generation of a variant library carrying
nucleotide or amino acid substitutions in the target element (frequently termed saturation muta-
genesis). Some libraries are composed of full-length constructs to be introduced later into cells,
while other libraries may be collections of reagents enabling in situ mutagenesis.

A straightforward approach to saturation mutagenesis uses error-prone polymerase chain reac-
tion amplification (26). Although this method can be biased toward a subset of nucleotide changes
(transitions over transversions), some methods can yield a more balanced mutational spectrum
(108). A drawback of this method, however, is that it tends to provide only single-nucleotide sub-
stitutions,which,while acceptable for noncoding regions,would fail to encodemost of the possible
amino acid substitutions in a coding sequence of interest. Although coding variants observed in
humans, as well as other species, are primarily single-nucleotide changes, analysis of the full range
of amino acid substitutions can provide further insight into the biochemistry underlying a protein’s
function.

Oligonucleotide-targeted editing is a more flexible, albeit more expensive, option in which
libraries of mutagenic oligonucleotides encoding the desired substitutions are synthesized. Varia-
tions of this method include POPCode (196), Kunkel (116), PFunkel (59), EMPIRIC (89), PALS
(109), and inverse polymerase chain reaction mutagenesis (95).Mutagenic libraries can be synthe-
sized to directly encode the desired substitutions or designed with degenerate sequences, by which
all possible substitutions can be reached cost-effectively. For coding libraries, certain degenerate
codons (i.e., NNS and NNK) have the advantage of encoding all possible amino acid changes
while reducing the frequency of stop codons (relative to NNN mutagenesis), though the use of
multiple codons for an amino acid or stop codon substitution at a given position can provide the
advantage of internal replication.

Libraries can be also synthesized, allowing for precise control of library composition. Restric-
tions on fragment length, however, have limited this approach to shorter elements and guide RNA
libraries or tomethods requiring further assembly in the case of larger constructs (35, 58, 136, 149).
Continued advances in DNA synthesis will make this an increasingly tractable option for longer
sequences. Alternatively, combining genome fragmentation and DNA capture methods, as often
applied in the context of massively parallel reporter assays (MPRAs) and STARR-seq-based assays,
can generate high-coverage libraries from genomic DNA (9, 187, 189, 192, 193).

In situ editing for saturation mutagenesis at the endogenous target genomic locus has also
been applied using CRISPR-related technologies. In this approach, the synthesized guide RNAs
[single-guide RNAs (sgRNAs) or prime editing guide RNAs (pegRNAs)] are cloned into a delivery
vector under an RNA polymerase III promoter (e.g., U6) and delivered along with the CRISPR-
Cas effector of choice. These approaches are further described in the delivery section below.

There are many applications for libraries with variant combinations. Such libraries may cover
single-target elements that carry multiple variants, enabling one to solve protein structures (158,
164), as noted above, or to understand genetic interactions between common and rare variants
(194). Alternatively, libraries for two different elements may be usefully combined; for exam-
ple, two different proteins can be mutagenized simultaneously to identify mutually compensatory
changes and other genetic interactions across a protein interaction interface (43).

Delivery of the Variant Library

A variant library can be delivered to a model system of choice by integration into the genome at
a safe harbor site, by transient introduction on episomes, or by in situ editing. Considerations for
the method of delivery will depend on whether the assay is sensitive to the number of variant and
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wild-type alleles and on whether assay fidelity demands the assessment of variants in their native
genomic context.

To model phenotypes, it is important to consider the number of alleles at each relevant locus.
Where the variant effects under study are phenotypically dominant in the assay, the presence of
additional wild-type alleles may be tolerated and indeed may yield more accurate measures of
allelic effects (e.g., where one allele has a dominant negative impact on the others) (134). For
other assay systems, only one variant allele should be delivered per cell to faithfully associate
variant effects with single-cell phenotypes. Where variant effects are recessive, the variant allele
should either be the only expressed, or otherwise active, allele of the target element in its cell or
be homozygous.

A popular method of variant integration is the Bxb1 landing pad system, designed to ensure
that only a single variant-expressing construct is integrated into each cell (128, 129). This system
also allows for endogenous alleles of the target to be eliminated where necessary. Alternatively,
lentivirus delivery at a low multiplicity of infection can circumvent the need to engineer a landing
pad cell line (124). Varying genomic integration sites due to the random integration of lentivirus
can, however, lead to variable expression, such that this approach may require averaging over
more integrants or be lessened by the introduction of antirepressor elements (79). Additionally, in
assays involving state changes, such as cellular differentiation, silencing of lentiviral integrants is
an important concern, and here again, a landing pad system integrated at a ubiquitously expressed
locus, such as AAVS1, can be beneficial.

In certain applications, it is tolerable, or even desirable, to express many variants of the tar-
get of interest within the same cell. This includes assays in which the phenotype of interest is a
transcript level, where the variants of interest are in cis with transcript-encoding DNA and where
the identity of the variant is encoded by the transcript (108, 135, 149). To express many variant
constructs in a given cell, one might use extrachromosomal delivery of the library on episomes or
genomic integration by lentivirus (110). Episomal expression, however, may fail to capture certain
epigenetic effects (e.g., long-range interactions and transcription factor binding) where episomes
are not subject to the same mechanisms that control genomically integrated elements (110).Here,
endogenous integration can capture more context-dependent effects and is useful when working
with cell lines that yield low transfection efficiencies (79).

As noted above, saturationmutagenesis can be performed in situ by directly editing the endoge-
nous locus.To identify regulatory elements, tiledCas9-mediated cleavage can yieldmany deletions
due to nonhomologous end-joining (NHEJ) repair, thereby creating random disruptions across
a target region (27). Where the goal is to understand the impact of specific variants, saturation
genome editing can be performed by Cas9-mediated cleavage in the presence of donor templates,
using homology-directed repair (HDR) to generate integrated variant libraries at an endogenous
locus (57, 58). Given limited HDR efficiency, however, this approach may not be compatible with
all cell lines and may yield deletions due to NHEJ (36). Saturation editing can also be performed
by fusing a catalytically inactive (dead) Cas9 (dCas9) to a base editor, but this will not gener-
ate all possible changes in equal proportions. For example, the cytosine deaminase base editor
yields transition mutations (C:G to A:T), but only rarely other substitutions (111, 117). Recently,
prime editing, in which a catalytically impaired Cas9 is fused to a reverse transcriptase, was ex-
tended to saturation editing in a human cell line by encoding a library of programmed guide RNAs
(gRNAs) that simultaneously specify the target site and encode the desired mutation (8, 50). This
can be applied in cells with inefficient HDR repair, and while all Cas9-based approaches require
the availability of a protospacer-adjacent motif near a target site, this constraint is more relaxed
for prime editing.
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Figure 3

(a) Variant effects measurable by sequence–function assays, with common exemplar assays for each (b) placed in a ternary plot within
the design axes of tractability, fidelity, and granularity to illustrate the inherent trade-off between these features. Abbreviation:
VAMP-seq, variant abundance by massively parallel sequencing.

To prevent edits from generating multiple alleles with different variants, in situ editing can
be carried out in haploid cell lines, such as the near-haploid Hap1 line (57, 58). Alternatively,
individual loci can be haploidized; for example, in situ editing ofNPC1was carried out at a triploid
locus in the HEK293T cell line by introducing deletions to two of the three alleles (50).

Phenotypic Readout

Design and validation of a functional assay is often the most challenging part of a sequence–
function study, and an astounding breadth of phenotypic readouts have been used to dissect the
molecular, cellular, and clinical effects of both coding and noncoding variants. Here, we classify
assay selection for variant interpretation by whether it is assessing the effects of genetic variants
on gene regulatory, molecular, and cellular phenotypes. Assays may also range along a spectrum
from bespoke (i.e., tailored to an individual protein or noncoding element) to generalizable (i.e.,
widely applicable to a range of targets).

In Figure 3, we place exemplar assays within the design axes of tractability, fidelity, and granu-
larity, illustrating the inherent trade-off between these features. Although quantifying these design
parameters is subjective and to a degree case dependent, this conceptual exercise can be helpful in
weighing the relative merits of alternative assays.

Variant effects on regulation.The mapping of functional elements within the noncoding
genome is an ongoing process, with millions of enhancers and promoters, many with known rel-
evance to diverse human cell types and tissues, already annotated. These annotations, however,
provide limited insight into key driver nucleotides and their downstream effects. To detect new
elements, connect predicted elements to effector genes and downstream functions, and identify
the impacts of noncoding variation within these elements, high-throughput functional assays will
be critical.

CRISPR-mediated in situ perturbations have been widely used to connect regulatory elements
to their downstream effector genes and functions and, when applied in an inducible system, can
do so across various cell stages (75, 76, 87, 147, 150, 182, 202). By combining multiplexed per-
turbations with scRNA-seq as a readout (e.g., Perturb-seq), transcriptomic profiles can be used
to connect regulatory elements to downstream effects and can do so at increasing efficiency
and sensitivity when measuring the expression of predetermined targets (e.g., TAP-seq) (2, 39,
44, 69, 126, 165). This was applied to obtain genome-scale transcriptome phenotypes for 200
TP53 and KRAS variants and should prove useful as a generalizable system for discovering more
tractable reporter assays to affordably measure the impacts of all variants in target proteins or non-
coding elements (186). Alternatively, CRISPR-FlowFISH quantitatively measures the effects of
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perturbations in candidate noncoding regulatory elements on the expression of select genes by
RNA fluorescence in situ hybridization (68, 71, 152). Recent efforts to tile noncoding regulatory
elements by CRISPRi (CRISPR interference) (67) and CREST-seq (42) have showcased the util-
ity of deploying dense tiling as a method to narrow gene regulatory elements down to functional
noncoding variants. To further extend readouts to multiple phenotypes simultaneously, methods
such as ECCITE-seq can combine perturbations with the measurement of transcriptional state
and protein levels (of specific cell surface proteins) in single cells (138).

To quantitatively assess the regulatory activity of noncoding elements, STARR-seq uses self-
reporting episomal constructs. In this approach, a sequence library (often of randomly fragmented
genomic DNA) is inserted into the 3′ untranslated region (UTR) of a reporter gene, allowing
fragments to drive their expression and act as their own transcribed barcodes (9). STARR-seq has
limited throughput, however, such that it is not scalable to study saturated libraries from larger
genomes.To circumvent this limitation,Cap-STARR-seqmakes use of custommicroarray capture
to select and assay a predetermined set of known or predicted regulatory elements (189). Similarly,
ChIP-STARR integrates a ChIP-seq library into the STARR-seq system, allowing interrogation
of elements that may be bound by specific DNA-binding proteins (192). To enable genome-wide
testing of regulatory regions, HiDRA selectively fragments genomic DNA at regions of open
chromatin to densely survey putative transcriptional regulatory elements using the STARR-seq
system and thus enable the identification of regulatory elements at up to ∼20-nt resolution (193).

In MPRAs, variant libraries are generally synthesized as oligonucleotides (e.g., on pro-
grammable microarrays) and the barcoded sequences are integrated into a reporter construct to
enable the efficient dissection of transcriptional regulatory elements (149).With saturation muta-
genesis, MPRAs can efficiently reveal the effects of single and combinatorial nucleotide changes
on regulatory activity (48, 104, 108, 135) and have been applied in human embryonic stem cells
(93, 113) and in vivo, for example, to liver-specific enhancers in mice (148). To map functional
elements in untranslated regions, a library of 3′ or 5′ UTR sequences can be inserted downstream
of a reporter gene, and the effects of sequence variants on mRNA abundance and stability, as
well as on protein production, can be assessed (163, 203). To measure the effects of variants on
splicing,minigene assays can be used in combination with libraries spanning multiple intron-exon
junctions (15, 20, 72, 97, 102, 197). For MPRAs, and other methods where detecting the pheno-
type and demultiplexing are both accomplished by sequencing, there is little distinction between
phenotypic readout and sequence-based demultiplexing.

Variant effects on protein function. Both coding and noncoding genetic variation can impact
protein abundance and alter protein function. Amino acid changes can affect protein function ei-
ther directly by altering a specific role (e.g., a molecular interaction or enzymatic activity) or more
generally by causing an overall loss of stability. Variation in a transcription-regulatory element can
impact protein abundance (and function) by altering the expression levels of the element’s effector
genes.Variation in splice sites, splicing enhancers, or splicing silencermotifs can also change a pro-
tein’s abundance (e.g., via nonsense-mediated decay) or more radically alter a protein’s sequence
and structure (e.g., via exon skipping or intron retention).

Phenotypic readouts have been applied to interrogate a wide range of molecular functions,
including ubiquitin ligase activity (173), ion channel function (77), protein aggregation (18, 81),
ligand interactions (88), DNAmismatch repair (96), and virus–host protein interactions (28, 175).
New assays can be specifically tailored to a given function where this is required to achieve high
fidelity. Developing and validating these assays can, however, be resource intensive, particularly
when considering that they may not be generalizable to other targets. Alternatively, assays that
can be more broadly applied are an attractive option with lower recurrent development costs.
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An important class of generalizable assays measures variant effects on protein abundance. To
assess protein stability directly, VAMP-seq employs a fluorescent reporter construct fused to a
protein of interest, such that variants can impact the abundance of the fluorescent reporter via
effects on translation rates, folding, stability, and degradation (127). Abundance can also be mea-
sured via intra- or extracellular labeling with fluorescent antibodies (112). Where the protein of
interest affects the abundance of a secondary protein, this can be harnessed as a generalizable proxy
assay (124) and can also be a useful source of generalizable assays for noncoding elements (71).
Furthermore, generalizable variant assays may yield multiple phenotypes; for example, ECCITE-
seq simultaneously probes the impact of noncoding variants both on the abundance of specific
proteins and, more broadly, on transcriptomic profiles (138).

Another class of generalizable assays measures the impact of variation on protein–protein
interactions, for example, using the yeast two-hybrid system (56). Here, two proteins of interest
are fused to complementary fragments of the transcription factor Gal4. Binding of the two
proteins promotes reconstitution of the fragments, such that the reconstituted Gal4 drives the
expression of a selectable reporter gene, which is often an auxotrophic or fluorescent marker
(46, 174). This tractable system has been used to quantitatively analyze the impacts of variants in
the RING domain of BRCA1 on interaction with the BARD1 RING domain (173). In another
example, a system employing a split RNA polymerase biosensor in phages was applied to assess
protein interactions (205).

Several studies have also used both generalizable and bespoke assays to gain amore comprehen-
sive understanding of the effects of the mutational landscape on protein function (7, 31, 178); for
instance, the tumor suppressor PTEN has been examined with respect to both cellular abundance
(by VAMP-seq) and enzymatic activity (127, 137).Where high-fidelity protein-specific assays are
not easily scalable, one can leverage a generalizable assay on all variants while performing more
resource-intensive bespoke assays on key residues at a smaller scale.

Variant effects on cellular phenotype. Linking genetic variation to disease-relevant cellular
phenotypes and programs remains an unmet need in medical genetics. Fitness-based assays, where
an element of interest is required for the model’s overall fitness, can be harnessed in competitive
growth assays,where variants conferring a fitness advantage tend to increase in frequency through-
out the population (21, 74). Growth as a selection is useful for several reasons. First, it is easily
scalable to high coverage of large variant libraries without relying on expensive machine time (e.g.,
cell sorting). Second, in the case of assays relying on synthetic growth defects or essential gene
complementation, the entire range of a protein’s function is at work in the model. Growth-based
functional complementation in yeast, in which a human gene rescues the fitness effect conferred
by deletion of its ortholog, has been widely used as a phenotypic readout (179, 194, 196). Growth
phenotypes in yeast have also been used to define models of unstructured proteins, in which cer-
tain conformations of the protein cause dose-dependent toxicity (18, 143). While growth and
resistance screens are straightforward and cost-effective, many cellular programs cannot be cap-
tured with such assays. Pooled CRISPR interference and activation screens combined with cell
sorting–based readouts such as activation of the unfolded protein response (2) or other sortable
phenotypes have proven useful to trace both coding and noncoding genetic elements to cellular
processes. Cellular readouts such as insulin secretion have further been used to screen type 2 dia-
betes candidate genes identified in genome-wide association studies in a human pancreatic β-cell
line (184).

Distinct image-based cellular phenotypes or morphologies can be similarly effective in captur-
ing a protein’s function. Image-based profiling can facilitate the systematic analysis of a diverse
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set of spatially resolved cellular and subcellular phenotypes in a scalable format. A recent study,
applying high-content fluorescence microscopy to measure the effects of gene perturbations on
the yeast endocytic pathway, found that ∼30% of the more than 5,000 yeast genes perturbed
yielded mutant phenotypes, nearly half of which displayed multiple phenotypes (130). Pooled op-
tical screening can be used in human cells to connect genes, gene regulatory elements, and alleles
with rich cellular and subcellular phenotypes and, when combined with in situ sequencing, can
resolve dynamic processes in real time (55). Furthermore, optical screening can detect morpho-
logical pleiotropy and penetrance, particularly when applied at the single-cell level. Rapid im-
age analysis together with targeted cell labeling by illumination of a photoconvertible fluorescent
protein enables cell sorting on the basis of morphology at increasing scale (86, 100), and recent
technological advances may soon allow morphology-based cell sorting more directly (146, 166).
As platforms improve, pooled optical screening will become an ever more attractive option for
assaying variant effects, capturing increasingly complex morphologies at scale (118).

Sequence-Based Demultiplexing

The choice of next-generation DNA sequencing technology used for readout will generally de-
pend on the length of the genetic element in question. Where shorter constructs are concerned,
short-read sequencing can be applied (45, 62). Duplex sequencing, in which both strands of each
molecule are sequenced, can greatly increase variant calling accuracy. To cover longer stretches of
DNA, each of potentially many shorter segments of a larger construct of interest can be sequenced
separately (e.g., using the TileSeq approach (196). This approach will, however, fail to detect cases
in which a variant within the sequenced segment is connected in cis with variants outside the seg-
ment, and therefore is less suited to studies looking to understand the impacts of multiple variants
per clone.

Alternatively, long-read sequencing can be applied to sequence longer constructs. Though
the current cost of long-read sequencing approaches makes them less appropriate for measuring
variant frequencies directly, they can be cost-effective when combined with DNA barcodes. Here,
the genotype of each clone is connected to a unique barcode sequence by long-read sequencing
so that barcodes alone need to be sequenced to read out the results of a multiplexed assay (7, 131,
196).

Functional Interpretation

Following sequencing readout, variant counts must be converted to functional scores. Several
computational tools have been designed to handle inputs from sequence–function studies of cod-
ing nucleotides, refining outputs (17, 53, 63, 89, 159) and imputing missing scores for unmea-
sured residues (80, 196), and for MPRA-like studies of noncoding nucleotides (9, 10, 49, 79, 193).
Importantly, sequence–function studies result in continuous distributions of effect sizes, and so
functionally normal and abnormal variant benchmark sets should be used to calibrate these dis-
tributions. For assays on coding variants, functional scores can be rescaled based on the scores
of nonsense and synonymous variants. Assays of noncoding elements can be rescaled with known
damaging variants or relative to the distribution of random sequences. Important considerations
for functional assay scoring and downstream interpretation include the estimation of errors or
confidence intervals and procedures for excluding less-well-measured variants (53, 159, 196). Fur-
thermore, score calibration can differ depending on the goals of variant assessment, for instance,
estimating the probability of pathogenicity (60) rather than the quantitative biophysical effects on
protein function (18, 73).
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CONCLUDING REMARKS

Multiplexed sequence–function studies have thus far been applied to hundreds of thousands of
genetic variants, yielding substantial clinical, molecular, and biophysical insights. In the process,
an impressive collection of experimental methodologies has been developed to enable these ex-
periments at ever-increasing tractability, fidelity, and granularity.

To realize the full potential of these technologies, certain remaining challenges must be
addressed. First, while publicly available databases have been developed, the data from many
sequence–function studies remain difficult to access. Open data sharing is critically important
for the impact of sequence–function studies. Second, sequence–function studies for variant clas-
sification have largely focused on Mendelian traits, but understanding how individual variants
influence penetrance and expressivity and further interact with other genetic and environmental
factors will ultimately be required.Third, for relevance to diverse populations, the genetic contexts
of ancestry and sex should be considered in sequence–function studies (162). Finally, high-quality
experimental assessments will inevitably conflict with clinical annotations, and these discordances
cannot be easily resolved without the need for further interrogation in higher-fidelity models or
by comparison to independent patient cohorts.

A complete functional annotation of sequence variants may require phenotyping in specific
relevant cellular contexts. For instance, screening of variants in some cell lines might fail to capture
functional differences that depend on physiologic or tissue contexts, and these dependencies are
often initially unknown. Addressing this aspect, while also dealing with the intrinsic heterogeneity
of most multicellular biological systems, remains another overarching challenge.

It is important to note that even small functional effects may be of great interest. Indeed, a
small impact on the activity of a given gene may have a profound qualitative effect on a cellular
phenotype, and a modest cellular phenotype may correspond to a dramatic organismal phenotype
(139). Small effects may also be important where cellular and organismal phenotypes result from
the convergence of impacts at many loci, such that even large effects may result from additive
polygenic combinations (51). Therefore, the interpretation of a given personal human genome
will require integrating the functional impacts of many variants.

It is exciting to consider that an atlas of VEmaps covering both coding and noncoding variation
could already be generated with currently available technology. Though the pieces to do this
are largely in place, linking the full complexity of genetic variation to human phenotypes will
necessitate a concerted and interdisciplinary community effort.
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