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Genetic interactions define overlapping functions and compensa-
tory pathways. In particular, synthetic sick or lethal (SSL) genetic
interactions are important for understanding how an organism
tolerates random mutation, i.e., genetic robustness. Comprehen-
sive identification of SSL relationships remains far from complete
in any organism, because mapping these networks is highly labor
intensive. The ability to predict SSL interactions, however, could
efficiently guide further SSL discovery. Toward this end, we pre-
dicted pairs of SSL genes in Saccharomyces cerevisiae by using
probabilistic decision trees to integrate multiple types of data,
including localization, mRNA expression, physical interaction, pro-
tein function, and characteristics of network topology. Experimen-
tal evidence demonstrated the reliability of this strategy, which,
when extended to human SSL interactions, may prove valuable in
discovering drug targets for cancer therapy and in identifying
genes responsible for multigenic diseases.

Mutations into two different genes sometimes confer a
significantly more deleterious phenotype than either sin-

gle mutation alone. Death or pronounced growth deficiency
arising in such double mutants is referred to as synthetic lethality
or synthetic sickness, respectively.

A comprehensive map of synthetic sick or lethal (SSL) inter-
actions for an inbred laboratory organism may provide a valu-
able template for understanding the basic principles underlying
genetic interaction networks (1–3) in both inbred and outbred
populations (4, 5). In humans, genetic interactions are involved
in many complex phenotypes and are the defining basis of
multigenic genetic disease (6–8). SSL interactions can also be
used to find effective drug combinations or to identify novel drug
targets for tumor-specific therapy (4, 9). Finally, SSL interac-
tions comprise a network that is far denser than, and largely
nonoverlapping with, that of protein interactions (5). Thus,
genetic and protein interaction networks provide complemen-
tary information.

Due to their combinatorial nature, mapping SSL networks is
extremely labor intensive (5, 10), even in genetically amenable
model organisms. For example, comprehensive assessment of
SSL gene pairs in Saccharomyces cerevisiae (with �6,000 genes)
requires constructing �18 million double mutants, including
conditional mutations in essential genes. To date, Synthetic
Genetic Array (SGA) analysis has been used to assess �4% of
gene pairs in one growth condition (5, 11). However, full
delineation of pairwise interactions requires assessment of mu-
tant phenotypes in many growth conditions. Determining the
SSL network for Caenorhabditis elegans, Drosophila melano-
gaster, or Mus musculus is even more daunting, because con-
struction of double mutants is technically difficult and because
these organisms have 10- to 25-fold more gene pairs than S.
cerevisiae.

A reliable method for predicting SSL interactions, however,
may alleviate this experimental bottleneck. The only previous
attempt to predict genetic interactions relied on metabolic f lux
analysis, an approach applicable only to pairs of genes involved

in central metabolism (12). Here, we integrate multiple data
types to construct probabilistic decision trees with which we
predict SSL gene pairs in S. cerevisiae. This study represents a
rigorous demonstration that genetic interactions can be pre-
dicted. This approach should reduce the labor involved in
identification of SSL interactions. Additionally, the nature of
the method allows inferences as to which kinds of information
are most useful in predicting such interactions and may thus
sharpen our understanding of the fundamental basis for
genetic interaction.

Methods
Collecting and Organizing Gene-Pair Characteristic Data. To predict
SSL gene pairs, we identified data types potentially helpful in
characterizing SSL interactions. We then used multiple sources
(see Table 1 for reference) to determine which yeast gene pairs
possessed each characteristic. To construct our decision trees, we
used only binary characteristics. Some characteristics, such as
colocalization, were inherently binary, whereas continuous char-
acteristics were mapped to several binary characteristics with
alternative thresholds. For example, because homology between
genes was measured (by BLAST) as a continuous E value, we
created three binary characteristics by using BLAST E value
thresholds of 10�3, 10�6, and 10�12 (13).

Constructing Decision Trees. Decision trees were constructed
greedily, beginning with all gene pairs of the training set T in the
root node. Gene pairs of each node N were recursively parti-
tioned into two daughter nodes based on the characteristic,
which yielded the highest conditional information gain with SSL
interaction among gene pairs of node N. Let Yc(t) be a binary
variable indicating whether gene pair t is annotated with char-
acteristic c and X be the random variable indicating whether a
gene pair is SSL. When gene pairs in node N were distributed
between two nodes N0 and N1, where Na � {t � N, Yc(t) � a},
the conditional information gain was calculated as

HN�X� � �
a�0,1

�Na�
�N� HNa

�X�,

where HN(X) is the entropy of X at node N, defined as

�pN log�pN� � �1 � pN� log�1 � pN� ,

and pN is the probability that a gene pair t � N is SSL. To
compensate for small sample size, we added one pseudocount
distributed in proportion to the fraction of SSL pairs in the entire
training set T.

Abbreviations: SSL, synthetic sick or lethal; SGA, synthetic genetic array; MIPS, Munich
Information Center for Protein Sequences.
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To avoid overfitting the training data, we enforced an ‘‘early-
stopping’’ criterion based on the Bayesian Information Criterion
(14) (asymptotically equivalent to Minimum Description
Length). To split a node N into two daughters, we required that
the maximal conditional information gain exceed log(�T�)�2�N�.
Here, �N� is the number of gene pairs in node N, and �T� is the
number of pairs in the entire training set. If the maximal
conditional information gain in a node fell below the criterion,
the node was not split. Instead, the node became a leaf, or
terminal node.

Scoring Leaves and Gene Pairs. Each leaf of a decision tree received
a score equal to the fraction of its gene pairs (from the training
set) that were SSL. To compensate for small sample size, a total
of one pseudocount was added to the number of SSL and
non-SSL pairs, distributed in proportion to the fractions of SSL
and non-SSL gene pairs, respectively, in the entire training set.

To score our predictions, we mapped each gene pair from the
test set to a leaf based on its characteristics. Beginning at the root
node, each gene pair was successively assigned to a left or right
daughter node based on whether the pair possessed the charac-
teristic used to split the node. Once a gene pair reached a leaf,
its mapping was complete, and the pair acquired the score of the
leaf. The highest-scoring pairs became our predicted SSL pairs.

Results
Gene-Pair Characteristics. To predict SSL gene pairs, we identified
gene-pair characteristics potentially helpful in characterizing

SSL interactions. For example, protein products of SSL partners
that belong to redundant pathways may share sequence homol-
ogy, be localized in the same subcellular compartment, and�or
belong to the same functional category according to the Munich
Information Center for Protein Sequences (MIPS) (15). We also
assembled several measures of functional relatedness: conserved
gene neighborhood (16, 17), whether pairs of orthologs are
chromosomal neighbors in at least two different species; gene
fusion (18), whether pairs of orthologs are fused in another
genome; gene cooccurrence (19, 20), whether pairs of orthologs
have correlated appearance across genomes; and chromosomal
distance, whether two genes are located near one another in the
S. cerevisiae genome. In addition, we included characteristics that
describe local network topology around a gene pair, such as
mutual clustering coefficient in the physical interaction network
(21) and 11 characteristics prefixed by ‘‘2hop.’’ Each 2hop
characteristic captures specified relationships between a given
pair, A–B, and a third gene, C. For example, if protein A
physically interacts with protein C, and gene B is SSL with gene
C, then the gene pair A–B possesses the characteristic ‘‘2hop
physical–SSL’’ (Table 1). As its name implies, 2hop describes a
two-step path from A to B through C. We can then ask whether
a 2hop physical–SSL relationship is predictive of two genes being
SSL, as may be true in compensating pathways (discussed later).
We compiled a list of 123 hierarchically organized gene-pair
characteristics, falling into 26 major categories (Table 1; for a
complete list, see Table 2, which is published as supporting
information on the PNAS web site, and for descriptions, see

Table 1. Categories of gene-pair characteristics

Major category
No. of

characteristics Refs.

Appears in trees

1 2 3

Common upstream regulator 3 38
Gene cooccurrence 1 18–20
Chromosomal distance 4
Gene fusion 1 18
Conserved gene neighborhood 1 16–18
Physical interaction 15 39–42 x x x
mRNA coexpression 17 43, 44
Same predicted physical complex 1 45 x
Same MIPS function 1 15 x x x
Same MIPS protein class 1 15
Same subcellular localization 42 15 x x x
Same phenotype 1 15 x x x
Sequence homology 3 13 x x x
Mutual clustering coefficient in physical

interaction network
16 21

Posterior probability of physical interaction 4 21
2hop H - S 1 2, 7, 13, 15 x x x
2hop P - S 1 2, 7, 15, 39–42 x x x
2hop S - S 1 2, 7, 15 x x x
2hop S - X 1 2, 7, 15, 43, 44 x x x
2hop H - H 1 13
2hop H - P 1 13, 39–42 x
2hop H - R 1 13, 38 x
2hop H - X 1 13, 43, 44 x x
2hop P - P 1 39–42
2hop P - R 1 38–42
2hop X - X 1 43, 44 x

Presented are category description; the number of characteristics within each category; reference of data
source; whether category is represented in decision tree of crossvalidation (1), predicting experimentally vali-
dated gene pairs (2), or predicting new SSL pairs (3). For 2hop characteristics: H, sequence homology; P, physical
interaction; R, common upstream regulator; S, synthetic sick or lethal interaction; X, correlated mRNA expression.
In the bottom left diagram, Y and Z represent characteristics, S represents synthetic sick or lethal interaction, and
A, B, and C represent genes.
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Supporting Text, which is published as supporting information on
the PNAS web site), and then used multiple sources (Table 1) to
determine which gene pairs possess each characteristic.

Probabilistic Decision Trees. Probabilistic decision trees are pow-
erful tools for classifying objects and modeling probabilities (22).
Here, we use them to model the conditional probability that a
gene pair is SSL given a combination of its non-SSL character-
istics. Unlike alternative ‘‘black box’’ methods such as neural nets
or support vector machines, decision trees can explicitly reveal
the characteristics that determine a gene pair’s prediction score,
and, collectively, these characteristics can suggest biological
rationales for the prediction. Furthermore, decision trees do not
assume independence between predictive characteristics, as do
other methods such as naı̈ve Bayes. Finally, decision trees
produce scores that serve to rank predictions according to
confidence and have a useful probabilistic interpretation.

To build a decision tree, we first assigned a training set of gene
pairs to the root node. Beginning with the root node, we then
successively sorted gene pairs in each node into two daughter
nodes based on the characteristic deemed most informative of
SSL interaction (see Methods). If no characteristic was suffi-
ciently informative, a given node was not divided into daughters
and further branching was terminated. Thus, each gene pair in
the training set was assigned to a single terminal node, or leaf,
of the tree. Each leaf then received a score based on its fraction
of SSL pairs. To predict the SSL status of a gene pair outside the
training set, we mapped the pair to a leaf by its known charac-
teristics, and the pair received the score of that leaf. The
highest-scoring pairs became our top predictions. (See Methods
for further details.) Ultimately, the decision tree served to
determine rules that segregated gene pairs by their non-SSL
characteristics into subsets enriched in or depleted of SSL pairs.

Assessing Method Performance by Cross-Validation. To assess the
performance of our method, we used 4-fold cross-validation on
692,865 SSL-tested gene pairs (5, 11), of which 0.56% (3,868)
were SSL [see Table 3, which is published as supporting infor-
mation on the PNAS web site, an early version of the Tong et al.
(5) data]. Gene pairs were randomly divided into four groups,
and each group was scored by using a decision tree trained on the
remaining three. Thus, every gene pair in the data set was scored
without regard to its SSL status, and each tree was blind to the
SSL status of gene pairs used to assess its predictive capability.

We then assessed performance on only the 692,118 pairs
(99.9% of the training set) tested by SGA analysis (5, 11),
because we planned to later use SGA analysis to validate
predictions. To assess method performance overall, we com-
puted the sensitivity (or true-positive rate, defined here as the
fraction of SSL gene pairs correctly predicted) and false-positive
rate (defined here as the fraction of non-SSL gene pairs incor-
rectly predicted to be SSL) at a series of score thresholds. A plot
of sensitivity versus false-positive rate at various score thresholds
(Fig. 1; see Table 4, which is published as supporting information
on the PNAS web site, for all data points) revealed a sensitivity
of 80% at a false-positive rate of 18%. This is significantly better
than the false-positive rate of 80% expected from random
predictions at this sensitivity (P � 10�166). Most importantly, our
performance suggests that a large-scale screen guided by our
method could capture 80% of the SSL interactions by testing
�20% of all gene pairs.

By using alternative score thresholds, this approach may be
tuned to predict a subset of SSL interactions with higher
confidence at the cost of sensitivity. For example, 20% of the
interactions were detected at a false-positive rate of 0.2% (P
� 10�97). This translated to a success rate of 31% (740 SSL
interactions in 2,356 predictions), far exceeding the 0.56%
success rate expected of an unguided approach. Thus, when

experimental resources are limited and even a few genetic
interactions would be valuable, our method can provide a list of
candidate gene pairs that is highly enriched for SSL interaction.

The four trees generated in cross-validation (Fig. 4 a–d, which
is published as supporting information on the PNAS web site)
each contained between 45 and 55 nodes and were structurally
similar. The top predictor of SSL pairs was consistently the
characteristic 2hop SSL–SSL, in agreement with a previous
finding that SSL partners of a gene tend to interact with each
other in the genetic network (5). Analogously, dense local
clustering in the protein physical interaction network was helpful
in predicting physical interaction (21). Another top predictor,
2hop physical–SSL, may indicate compensating pathways in
which two gene products, A and C, physically interact in one
pathway, whereas a gene, B, belongs to a compensating pathway.
When both pathways are impaired (e.g., by mutation of at least
one gene from each pathway), the common biological role they
can each maintain may be lost, resulting in reduced fitness.
Therefore, when genes B and C were SSL and proteins A and C
physically interacted, 2hop physical–SSL helped us predict that
A and B were SSL (Table 1 diagram). Simultaneously excluding
either all 11 2hop descriptors (Fig. 1) or only the four SSL-
containing 2hop descriptors of network topology (Fig. 5, which
is published as supporting information on the PNAS web site)
noticeably decreased performance, further highlighting the im-
portance of network topology information in SSL prediction.

Next we investigated how omission of other characteristics
affected performance. We omitted information about localiza-
tion, function (specifically, the same MIPS function and MIPS
protein class), phenotype, or function and phenotype together.
Each omission affected performance only mildly (Fig. 5), sug-
gesting that none were critical to our performance, but each
improved it slightly.

Experimental Validation of SSL Predictions. Having achieved success
in cross-validation, we sought independent experimental valida-
tion for our method. We constructed one decision tree using all
692,865 pairs used in cross-validation (Fig. 6, which is published
as supporting information on the PNAS web site). Next we
scored a test set of 35,996 gene pairs from eight newly performed
SGA screens whose query genes were chosen, as in our training
set, with a preference for query genes involved in actin-based cell
polarity, cell wall biosynthesis, microtubule-based chromosome
segregation, or DNA synthesis and repair. The eight query genes

Fig. 1. SSL prediction performance in cross-validation using all gene-pair
characteristics (blue triangles), in cross-validation without 2hop characteristics
(green diamonds), of experimentally validated predictions using all charac-
teristics (red circles), and performance expected by chance (gray squares).
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were the glycosidases CWH41 and ROT2; glycosyl transferase,
ALG8; tubulin folding factor D, CIN1; the DNA helicases RRM3
and HPR5; ADP-ribosylation factor-like 1, ARL1; and KRE1
involved in cell wall �-glucan assembly (23). Parallel biases in our
training and test sets allowed us to demonstrate the capacity of
our approach to predict SSL interactions in a case where the
training set was representative of the test set. Comparison of our
predictions to experimental results revealed a performance
similar to that observed in cross-validation (Fig. 1; Table 5, which
is published as supporting information on the PNAS web site,
lists the data points).

In addition, we correctly predicted interactions more fre-
quently for some of the eight screens than for others (Fig. 7,
which is published as supporting information on the PNAS web
site), suggesting that performance of our method may vary from
gene to gene. Most importantly, though, both validation ap-
proaches demonstrated that a subset of SSL interactions could
be predicted with high confidence, suggesting that SSL predic-
tions can dramatically reduce the number of gene pairs that must
be tested, while maintaining high sensitivity.

Characteristics Most Useful in Predicting SSL Interactions. To identify
combinations of gene-pair characteristics predictive of SSL
interaction, we trained a decision tree using previously tested
pairs and examined characteristics associated with leaves that
were enriched for SSL pairs. To assemble our training set, we
began with gene pairs systematically tested for SSL interaction
by SGA and SGA-associated analyses [using the published
version of the SSL data (5, 11)]. To take advantage of non-
systematically derived data, we then supplemented our training
set with an additional 367 SSL pairs reported in the MIPS
database (15). MIPS, however, reports only gene pairs positive
for SSL interaction and does not provide negative training
examples important to our model. Therefore, to maintain the
0.58% (4,207�728,066) frequency of SSL pairs found by the
systematic screens, we also included 67,299 randomly selected
gene pairs, treating them as non-SSL (relatively few were

expected to be SSL, because the frequency of SSL is low). In
total, our training set comprised 795,732 gene pairs, including
4,598 identified SSL interactions involving 1,296 (�20%) genes.
To mitigate the bias in SGA query gene selection, we prohibited
our decision tree from using subcellular localization character-
istics (e.g., colocalization the nucleus) directly related to the
SGA bias, leaving 111 characteristics.

The resulting tree (Fig. 2) comprised 79 nodes and used
characteristics from 13 major categories, 10 represented in
previous trees and 3 new ones appearing in low-scoring areas of
the tree (Table 1). Thus, this new tree used similar characteristics
to those used by previous trees.

Each combination of characteristics leading to our top-scoring
leaves describes subtypes of known SSL gene pairs and offers
insight into mechanisms underlying genetic robustness. Here, we
focus on two examples.

Gene pairs in the highest-scoring leaf possess the character-
istics 2hop physical–SSL, the same function, and colocalization
in the endoplasmic reticulum. For example, the SSL pair, ALG5
and WBP1 (Fig. 3a), maps to this leaf. Alg5 is a UDP-glucose:
dolichyl-phosphate glycosyltransferase, and Wbp1 is a member
of the oligosaccharyl transferase glycoprotein complex. The
pair’s 2hop physical–SSL relationship stems from a physical
interaction between Alg5 and Swp1, a subunit of the oligosac-
charyl transferase glycoprotein complex, like Wbp1. Both genes
belong to the MIPS functional category and protein modification
and localize in the endoplasmic reticulum (15).

The most predictive characteristic of this highest-scoring leaf,
2hop physical–SSL, suggests a model in which gene pairs in this
leaf respectively belong to two compensating pathways (Fig. 8a,
which is published as supporting information on the PNAS web
site). Two other predictive characteristics associated with this
leaf, assignment to the same functional category and the same
subcellular location, are consistent with this idea. The tree also
indicates that gene pairs mapping to this highest-scoring leaf are
not annotated with the 2hop SSL–SSL characteristic, further
suggesting involvement of two compensating pathways. In ad-

Fig. 2. Tree used to predict new gene pairs. The 10 top-scoring leaf nodes are labeled by rank. Left and right arrows point to gene pairs with and without,
respectively, the characteristic that labels the node from which the arrow points. Arrowhead size is proportional to the fraction of gene pairs in the parent node
that were assigned to each daughter node. Nodes with higher (lower) fractions of SSL gene pairs than the root are red (blue). Color saturation reflects the entropy
with respect to SSL of gene pairs in a node relative to that of the root. Each node is labeled with the number of its gene pairs that are (�) or are not (�) SSL.
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dition, protein pairs corresponding to the gene pairs in this leaf
are not found in the same complex according to MIPS, suggest-
ing that the compensating pathways do not physically interact via
these pairs of genes (although they may do so upstream or
downstream).

The third-highest-scoring leaf provides another example in which
decision trees suggested informative combinations of characteris-
tics. Gene pairs in this leaf possess the characteristics 2hop SSL–
SSL, 2hop physical–SSL, 2hop SSL–coexpression, and the same
phenotype. For example, the SSL pair, PAC2 and JNM1 (Fig. 3c),
maps to this leaf. Pac2 is the tubulin-folding cofactor E, and Jnm1
is a coiled-coil domain protein required for proper nuclear migra-
tion during mitosis. The pair has five 2hop SSL–SSL relationships
involving YKE2, CIN8, TUB3, PAC10, and GIM5, respectively.
Their 2hop physical–SSL relationship is attributed to a physical
interaction between Jnm1 and the microtubule-binding protein
Nip100, and a SSL interaction between PAC2 and NIP100. The
2hop SSL–coexpression interaction stems from a SSL interaction
between JNM1 and the chaperone-encoding gene CPR6 and to
correlated mRNA expression of PAC2 and CPR6. In addition,
PAC2 and JNM1 both belong to the MIPS phenotype category,
‘‘tubulin cytoskeletal mutants.’’

One model suggested by the 2hop SSL–SSL characteristic
involves three or more compensating pathways for which loss of
any two is lethal (Fig. 8b). The 2hop physical–SSL and 2hop
SSL–coexpression characteristics suggest relationships between
the compensating pathways. Consistent with this interpretation,
genes paired in this leaf have similar single-mutant phenotypes.
This combination of characteristics is also consistent with an
alternative model in which proteins encoded by a gene pair are
each members of a protein complex for which the loss of either
member alone is tolerated, but loss of both is lethal.

These insights are particularly interesting because compen-
sating pathways are difficult to identify and, as a result, have not
been well studied. By contrast, duplicate genes, also thought to
underlie genetic robustness, are systematically identified by
sequence homology and have been actively investigated (1,
24–26). Homologous genes, however, comprise only an esti-
mated 2% of SSL gene pairs (5), suggesting that compensating
pathways or other explanations must underlie the majority of
SSL interactions. The combinations of characteristics used by

decision trees to predict can also identify genetic interactions
that arise due to compensatory pathways.

New SSL Predictions. Finally, the decision tree we used above to
describe predictive characteristics was also used to generate pre-
dictions among all yeast gene pairs potentially testable by SGA (i.e.,
pairs for which at least one gene was on the SGA array). Table 6,
which is published as supporting information on the PNAS web site,
lists the 5,000 top-scoring predictions. For example, one of the
highest-scoring pairs (mapping to the highest-scoring leaf) is FEN1
and SPO7 (Fig. 3b). FEN1 is a long-chain fatty acid elongase.
Mutants in FEN1 exhibit defects in budding and sporulation, likely
due to altered membrane phospholipid content (27). SPO7 is
dispensable for mitosis but is required for premeiotic DNA syn-
thesis, a normal mutation rate, recombination, meiosis I and II,
glycogen degradation, and sporulation. SSL interaction between
FEN1 and SPO7 may result from defects in meiosis completion and
sporulation. Another high-scoring pair (mapping to the third-
highest-scoring leaf) was ASF1 and XRS2 (Fig. 3d). Asf1 is an
antisilencing protein causing derepression of silent loci when over-
expressed, and Xrs2 is involved in DNA repair. Validation of these
predictions awaits further study.

Because SSL-containing 2hop characteristics were important
to our success in cross-validation and experimental validation,
we were curious about the performance of our predictions
involving genes absent in the SSL training network. In other
words, how well could we predict SSL interactions involving
genes with no previously known SSL partners? Leaf 9 (Fig. 2)
was the highest-scoring leaf that could have generated predic-
tions involving genes without SSL interactions in the training set,
because its gene pairs were not required to possess any SSL-
containing 2hop characteristics. Specifically, 65% (547�844) of
its predictions involved two genes with no SSL interactions in the
training set. Next, we checked the SSL status of these 547 pairs
in the Yeast Proteome Database (28), which was not consulted
in training our model. Surprisingly, 31 (Table 7, which is
published as supporting information on the PNAS web site) were
annotated as SSL. Unfortunately, we were unable to compute
our precise success rate, because the majority of these pairs had
not been tested for SSL interaction, and we had no way of
determining how many had been tested (pairs tested but found
negative for interaction are not reported in available databases).
Therefore, our success rate lies between 5.7% (31�547, assuming
that all 547 pairs were assessed for SSL interaction) and 100%,
with 57% being a reasonable estimate (assuming that 10% of
pairs have been assessed for interaction; this is a conservative
estimate, considering that the most systematic study to date has
tested only �3.5% of all gene pairs).

Conclusion
We have demonstrated that it is possible to successfully predict
genetic interactions by integrating genomic and proteomic in-
formation. Specifically, we predicted SSL gene pairs in S.
cerevisiae with a success rate such that 80% of the interactions
may be discovered by testing �20% of the pairs. In addition,
when experimental resources permit only small-scale studies, our
method can provide a set of candidate pairs that is highly
enriched for SSL interactions.

So what do we know about genetic interactions now? SSL
interactions buffer an organism from random mutation. Surpris-
ingly, relatively few (�3%) SSL-interacting genes share sequence
homology (5), which likely arises from gene duplication (29).
Although, as expected, many share similar Gene Ontology func-
tional categories (5), many may be functionally unrelated (29).
Here, we found that the strongest predictors of SSL interaction
were the 2hop characteristics (measuring local topology around a
gene pair), the same mutant phenotype, physical interaction, and
the same function, suggesting that gene pairs with these traits

Fig. 3. Gene-pair relationships. (a and b) Known (a) and predicted (b) SSL
gene pairs from the highest-scoring leaf of the decision tree. (c and d) Known
(c) and predicted (d) SSL gene pairs from the third-highest-scoring leaf. P,
physical interaction; S, synthetic sick or lethal interaction; X, correlated mRNA
expression.
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increase an organism’s tolerance for random mutation. Moreover,
combinations of characteristics describing SSL interactions help us
further classify genetic interactions. We discussed two combina-
tions of characteristics suggestive of gene pairs belonging to com-
pensatory pathways, which are often difficult to identify. We also
showed how gene pair characteristics, especially those describing
network topology, can help us visualize biological relationships that
may not be apparent from genetic interaction screens. Thus, our
findings and our methodology offer further insight into genetic
robustness and biological networks.

Our prediction approach offers several other applications.
Predicted SSL interactions can guide experimental identification
of genetic interactions and may be used to infer gene function by
predicting that a gene has similar function to its interacting
partner(s). This framework may also be useful in predicting SSL
interactions involving more than two genes; in predicting other
genetic interactions such as epistasis, suppression, or interac-
tions with phenotypes more difficult to score than cell growth;
or in predicting other gene-pair characteristics.

Our success in S. cerevisiae suggests that genetic interactions
may be predicted in higher organisms. Most immediately, in fly
and worm, high-throughput phenotype (30–32), protein inter-
action (33, 34), and mRNA expression (35, 36) data will com-
plement existing yeast data, which can be useful via sequence
homology in higher organisms. In addition, high-throughput
genetic interaction studies in worm, using RNA interference to
simultaneously suppress two genes or to suppress one gene in the
background of a germline mutation in a second gene, will
provide a training set of SSL interactions from which to build

predictive models to guide genetic interaction discovery in
higher organisms.

Reliable prediction in higher organisms has strong potential to
impact medicine. Because tumor suppressor genes are frequently
inactivated in cancer, using a drug to inhibit their SSL partners
may selectively impair cancer cells while normal tissue persists
(9, 37). Reliable prediction could also dramatically improve the
statistical power of multigenic disease mapping. Testing for
association between a disease and all possible combinations of
genes requires an unreasonable number of tests, severely dimin-
ishing the statistical power of association studies (6). SSL
prediction allows a candidate gene pair approach, in which only
combinations of genes most likely to genetically interact are
tested, thereby making multigenic disease mapping feasible
using reduced patient populations.

In yeast and in higher organisms, predicting genetic interac-
tions offers biological insight and the potential for medical
impact, even though exhaustive assessment of genetic interac-
tions is incomplete and will remain so for years to come.
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